

What is an Automorphic Representation?

Rahul Dalal

UC Berkeley

May 20, 2021

Definition

Definition

An Automorphic Representation is a **fundamental vibrational mode** of a certain **abstract mathematical object**

Definition

Definition

An Automorphic Representation is a **fundamental vibrational mode** of a certain **abstract mathematical object** that encodes solutions to **varied and seemingly disconnected math problems**.

Definition

Definition

An Automorphic Representation is a **fundamental vibrational mode** of a certain **abstract mathematical object** that encodes solutions to **varied and seemingly disconnected math problems**.

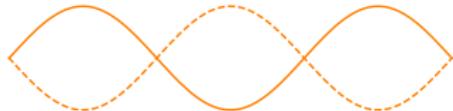
- The main goal of this talk will be to make sense of everything highlighted in orange.

The Taut String

Imagine a string pulled tightly at both ends. Fundamental modes are the most natural ways it vibrates:

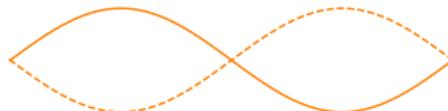
The Taut String

Imagine a string pulled tightly at both ends. **Fundamental modes** are the most natural ways it vibrates:



The Taut String

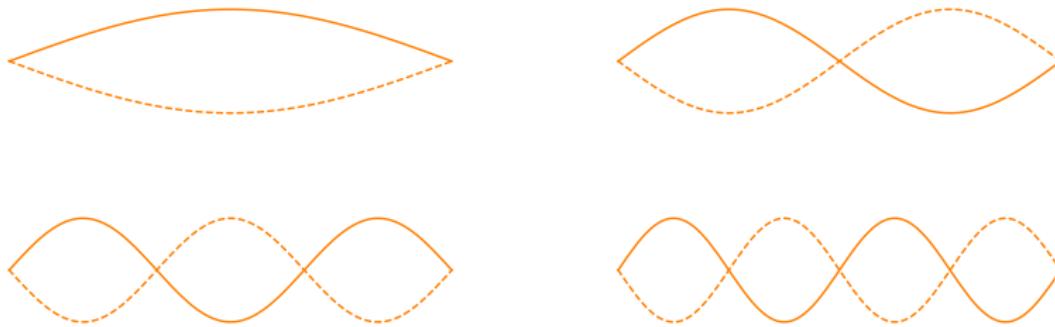
Imagine a string pulled tightly at both ends. **Fundamental modes** are the most natural ways it vibrates:



- Each has a different **frequency**—how many times/second it vibrates

The Taut String

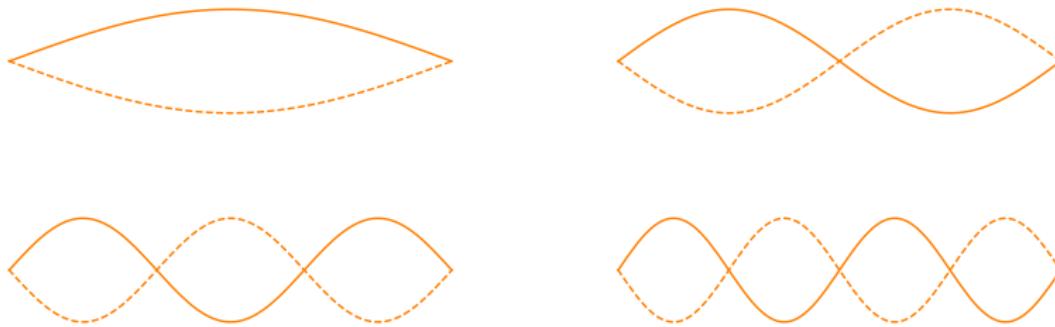
Imagine a string pulled tightly at both ends. Fundamental modes are the most natural ways it vibrates:



- Each has a different frequency—how many times/second it vibrates
- First mode \leftrightarrow frequency λ : n th mode with n nodes \leftrightarrow frequency $n\lambda$

The Taut String

Imagine a string pulled tightly at both ends. Fundamental modes are the most natural ways it vibrates:



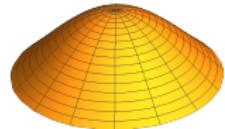
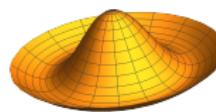
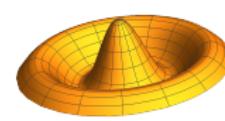
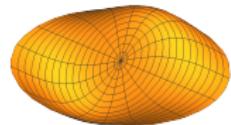
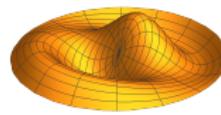
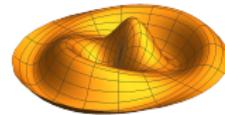
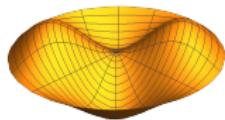
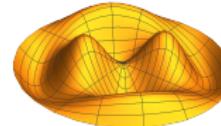
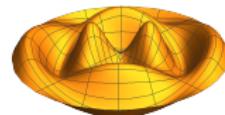
- Each has a different frequency—how many times/second it vibrates
- First mode \leftrightarrow frequency λ : n th mode with n nodes \leftrightarrow frequency $n\lambda$
- Fundamental modes encode the counting numbers!

More Complicated Objects?

A circular membrane:

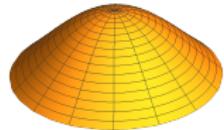
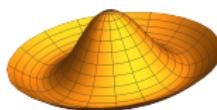
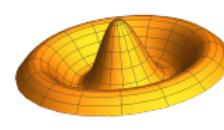
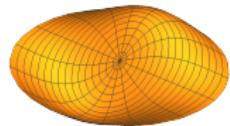
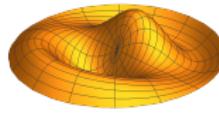
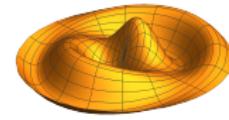
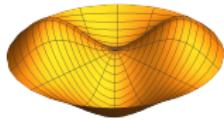
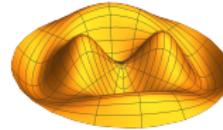
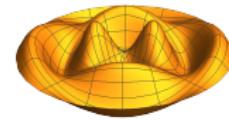
More Complicated Objects?

A circular membrane:



More Complicated Objects?

A circular membrane:



Frequencies are complicated (Bessel zeroes), different qualitative types from rotational symmetry ("weight" or " K -types")

Which Object Gives Automorphic Representations?

- Fundamental modes are an extremely general concept in math/the sciences

Which Object Gives Automorphic Representations?

- Fundamental modes are an extremely general concept in math/the sciences
- Automorphic Representations are ones on *very specific objects*

Which Object Gives Automorphic Representations?

- Fundamental modes are an extremely general concept in math/the sciences
- Automorphic Representations are ones on *very specific objects*
- These will be abstract and physically impossible—math not physics!

Which Object Gives Automorphic Representations?

- Fundamental modes are an extremely general concept in math/the sciences
- Automorphic Representations are ones on *very specific objects*
- These will be abstract and physically impossible—math not physics!
- We will build up the objects through examples/analogies of increasing complexity

Loop of String

Instead of a string held at two ends, start with a loop of string.

Loop of String

Instead of a string held at two ends, start with a loop of string.

- We think of it unrolled: as a line where repeating segments are the same:

Loop of String

Instead of a string held at two ends, start with a loop of string.

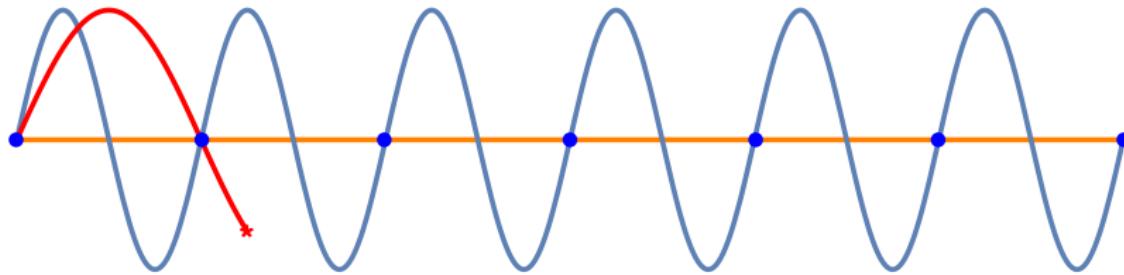
- We think of it unrolled: as a line where repeating segments are the same:

- The fundamental modes are those from before that match up on points that are supposed to be equal

Loop of String

Instead of a string held at two ends, start with a loop of string.

- We think of it unrolled: as a line where repeating segments are the same:

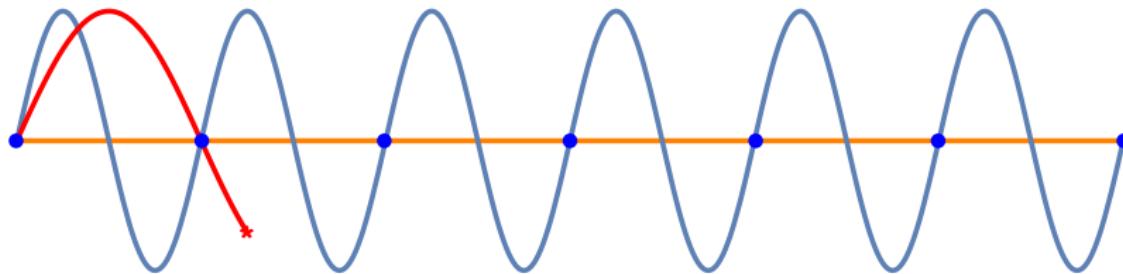


- The fundamental modes are those from before that match up on points that are supposed to be equal

Loop of String

Instead of a string held at two ends, start with a loop of string.

- We think of it unrolled: as a line where repeating segments are the same:



- The fundamental modes are those from before that match up on points that are supposed to be equal
- Still get one for each counting number

Two-fold Cover

We want to be agnostic about dot spacing:

Two-fold Cover

We want to be agnostic about dot spacing:

- Imagine half as many:

Two-fold Cover

We want to be agnostic about dot spacing:

- Imagine half as many:

Two-fold Cover

We want to be agnostic about dot spacing:

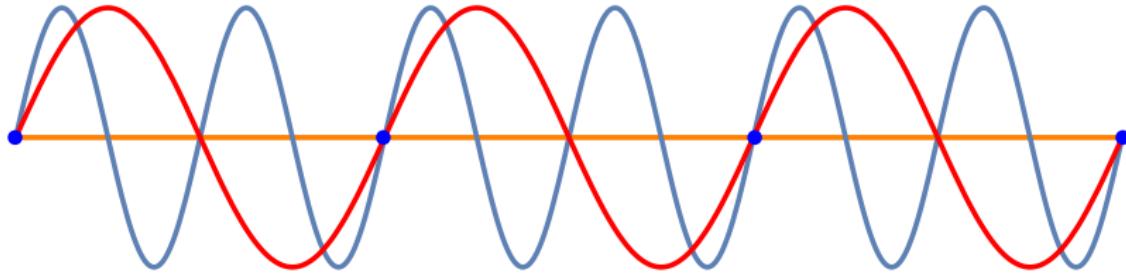
- Imagine half as many:

- Now the red mode works!

Two-fold Cover

We want to be agnostic about dot spacing:

- Imagine half as many:

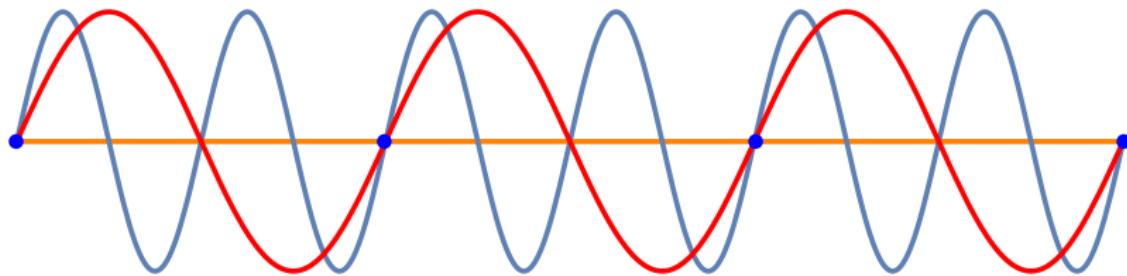


- Now the red mode works!

Two-fold Cover

We want to be agnostic about dot spacing:

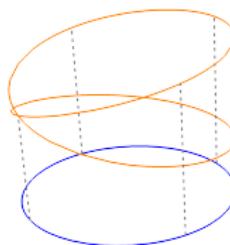
- Imagine half as many:



- Now the red mode works!
- Get “intermediate modes” corresponding to $1/2, 3/2, 5/2$, etc.

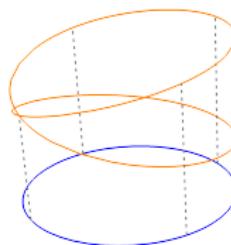
Taking a Limit

- The last frame corresponds to looking at a “twofold cover” of the circle:



Taking a Limit

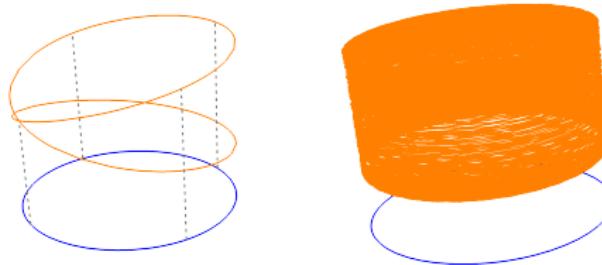
- The last frame corresponds to looking at a “twofold cover” of the circle:



- Look at the “limit” of 2-fold, 3-fold, etc. covers:

Taking a Limit

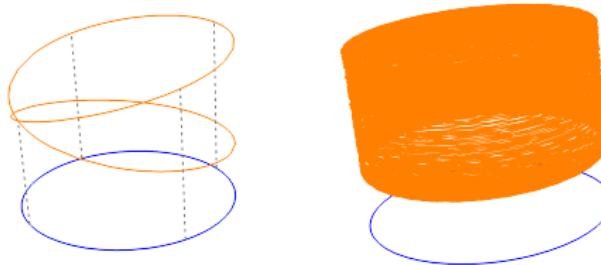
- The last frame corresponds to looking at a “twofold cover” of the circle:



- Look at the “limit” of 2-fold, 3-fold, etc. covers:

Taking a Limit

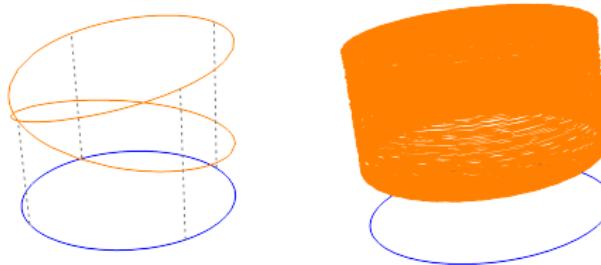
- The last frame corresponds to looking at a “twofold cover” of the circle:



- Look at the “limit” of 2-fold, 3-fold, etc. covers:
- Get an abstract object whose modes are all positive *rational* numbers—all “levels” n

Taking a Limit

- The last frame corresponds to looking at a “twofold cover” of the circle:



- Look at the “limit” of 2-fold, 3-fold, etc. covers:
- Get an abstract object whose modes are all positive *rational* numbers—all “levels” n
- This object is called $\mathbb{Q} \backslash \mathbb{A}$.

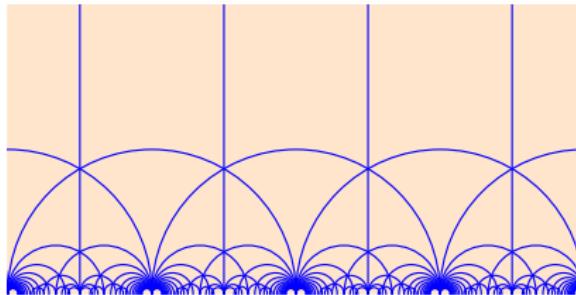
The Actual Objects

Automorphic Representations are modes on higher-dimensional analogues of this infinitely-wrapped loop of string.

The Actual Objects

Automorphic Representations are modes on higher-dimensional analogues of this infinitely-wrapped loop of string.

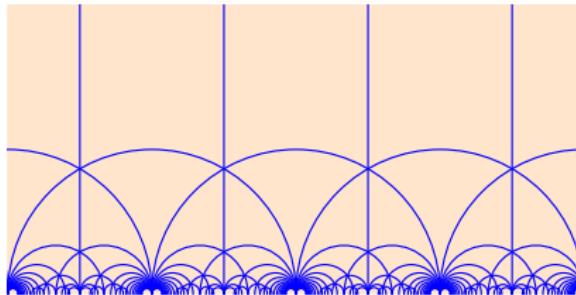
- "Unrolled" cartoon of $\text{GL}_2(\mathbb{Q}) \backslash \text{GL}_2(\mathbb{A})$:



The Actual Objects

Automorphic Representations are modes on higher-dimensional analogues of this infinitely-wrapped loop of string.

- "Unrolled" cartoon of $\text{GL}_2(\mathbb{Q}) \backslash \text{GL}_2(\mathbb{A})$:

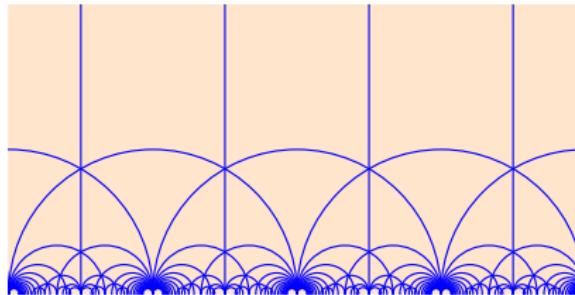


- still curved even after unrolling—this is like a world map, areas distorted!

The Actual Objects

Automorphic Representations are modes on higher-dimensional analogues of this infinitely-wrapped loop of string.

- "Unrolled" cartoon of " $GL_2(\mathbb{Q}) \backslash GL_2(\mathbb{A})$ ":



- still curved even after unrolling—this is like a world map, areas distorted!

General method: "**reductive group**" \mapsto correct type of object

Figure: $\Delta(z)$, hue is argument

Motivation

Why do we care about vibrational modes of such bizarre objects?

Motivation

Why do we care about vibrational modes of such bizarre objects?

- They encode information about so much in math:

Motivation

Why do we care about vibrational modes of such bizarre objects?

- They encode information about so much in math:
 - **Number Theory**: Galois representations—rational solutions to equations, behavior of primes (Langlands conjectures)

Motivation

Why do we care about vibrational modes of such bizarre objects?

- They encode information about so much in math:
 - **Number Theory**: Galois representations—rational solutions to equations, behavior of primes (Langlands conjectures)
 - **Computer Science**: expander graphs/higher-dimensional expanders—for designing algorithms

Motivation

Why do we care about vibrational modes of such bizarre objects?

- They encode information about so much in math:
 - **Number Theory**: Galois representations—rational solutions to equations, behavior of primes (Langlands conjectures)
 - **Computer Science**: expander graphs/higher-dimensional expanders—for designing algorithms
 - **Combinatorics**: identities for the partition function

Motivation

Why do we care about vibrational modes of such bizarre objects?

- They encode information about so much in math:
 - **Number Theory**: Galois representations—rational solutions to equations, behavior of primes (Langlands conjectures)
 - **Computer Science**: expander graphs/higher-dimensional expanders—for designing algorithms
 - **Combinatorics**: identities for the partition function
 - **Finite Groups**: representation theory of large sporadic simple groups (moonshine)

Motivation

Why do we care about vibrational modes of such bizarre objects?

- They encode information about so much in math:
 - **Number Theory**: Galois representations—rational solutions to equations, behavior of primes (Langlands conjectures)
 - **Computer Science**: expander graphs/higher-dimensional expanders—for designing algorithms
 - **Combinatorics**: identities for the partition function
 - **Finite Groups**: representation theory of large sporadic simple groups (moonshine)
 - **Physics**: graviton scattering, black hole partition functions

Motivation

Why do we care about vibrational modes of such bizarre objects?

- They encode information about so much in math:
 - **Number Theory**: Galois representations—rational solutions to equations, behavior of primes (Langlands conjectures)
 - **Computer Science**: expander graphs/higher-dimensional expanders—for designing algorithms
 - **Combinatorics**: identities for the partition function
 - **Finite Groups**: representation theory of large sporadic simple groups (moonshine)
 - **Physics**: graviton scattering, black hole partition functions
 - **etc.**

What do the connections do?

What makes these connections particularly interesting?

What do the connections do?

What makes these connections particularly interesting?

- Automorphic representations are too specific and bizarre—it's a complete mystery why they're important to anything at all!

What do the connections do?

What makes these connections particularly interesting?

- Automorphic representations are too specific and bizarre—it's a complete mystery why they're important to anything at all!
- Mathematicians know a lot about vibrational modes, not so much about the fields automorphic representations connect to.

What do the connections do?

What makes these connections particularly interesting?

- Automorphic representations are too specific and bizarre—it's a complete mystery why they're important to anything at all!
- Mathematicians know a lot about vibrational modes, not so much about the fields automorphic representations connect to.
- They can bridge between fields, hard problems may transfer to tractable ones

What do the connections do?

What makes these connections particularly interesting?

- Automorphic representations are too specific and bizarre—it's a complete mystery why they're important to anything at all!
- Mathematicians know a lot about vibrational modes, not so much about the fields automorphic representations connect to.
- They can bridge between fields, hard problems may transfer to tractable ones
 - First construction of optimal expander graphs → Ramanujan bound → Weil bound in number theory