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Note on technical details

• Anything in gray is a technical detail not relevant to this
particular topic

• Anything in orange we will only explain intuitively and
imprecisely due to time constraints.
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Outline

• Quantum Computing Motivation

• Results/Summary of Argument

• Argument step details

Draft available at: https:

//www.mat.univie.ac.at/~rdalal/GoldenGatesDraft.pdf

https://www.mat.univie.ac.at/~rdalal/GoldenGatesDraft.pdf
https://www.mat.univie.ac.at/~rdalal/GoldenGatesDraft.pdf
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Philosophy

This Talk: A problem from computer science that we can only
solve with the full power of modern automorphic theory

=⇒ key takeways

• Langlands program, Arthur’s classification, etc. are saying
concrete things about functions on real matrix groups

• some understandable to a college freshman or sophomore!

• Aut. reps. are important beyond number theory

• There are rewards for working beyond GLN

• maybe even a real-world application



QC Motivation Result Growth+Navigation Class number one Covering Aut. Bound Appendices

Philosophy

This Talk: A problem from computer science that we can only
solve with the full power of modern automorphic theory

=⇒ key takeways

• Langlands program, Arthur’s classification, etc. are saying
concrete things about functions on real matrix groups

• some understandable to a college freshman or sophomore!

• Aut. reps. are important beyond number theory

• There are rewards for working beyond GLN

• maybe even a real-world application



QC Motivation Result Growth+Navigation Class number one Covering Aut. Bound Appendices

Philosophy

This Talk: A problem from computer science that we can only
solve with the full power of modern automorphic theory

=⇒ key takeways

• Langlands program, Arthur’s classification, etc. are saying
concrete things about functions on real matrix groups

• some understandable to a college freshman or sophomore!

• Aut. reps. are important beyond number theory

• There are rewards for working beyond GLN

• maybe even a real-world application



QC Motivation Result Growth+Navigation Class number one Covering Aut. Bound Appendices

Philosophy

This Talk: A problem from computer science that we can only
solve with the full power of modern automorphic theory

=⇒ key takeways

• Langlands program, Arthur’s classification, etc. are saying
concrete things about functions on real matrix groups

• some understandable to a college freshman or sophomore!

• Aut. reps. are important beyond number theory

• There are rewards for working beyond GLN

• maybe even a real-world application



QC Motivation Result Growth+Navigation Class number one Covering Aut. Bound Appendices

Philosophy

This Talk: A problem from computer science that we can only
solve with the full power of modern automorphic theory

=⇒ key takeways

• Langlands program, Arthur’s classification, etc. are saying
concrete things about functions on real matrix groups

• some understandable to a college freshman or sophomore!

• Aut. reps. are important beyond number theory

• There are rewards for working beyond GLN

• maybe even a real-world application



QC Motivation Result Growth+Navigation Class number one Covering Aut. Bound Appendices

The Problem

Classical computers use classical circuits:

• Input: String of n bits in {0, 1}n: 01100....

• Circuit: some function {0, 1}n → {0, 1}m.

• Universal Gates: e.g. AND, OR, NOT can be used to build
any such function—need a good set to build computers

What about Quantum computers? Quantum Circuits

• Input: quantum superposition of all possible strings of n bits:
unit-norm vector in C{0,1}n ∼= C2n .

• Circuit: Projective Unitary map C2n → C2n + measurements

Problem: Find a finite set S of “universal gates” in PU(2n) that
can be multiplied to realize any unitary matrix C2n → C2n .
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Mathematical Formulation

What does it mean for a universal gate set S to approximate well?

• S (`): set of words of minimum length exactly ` in S .

• Def: invar. distance on PU(2n) e.g. d(x , y) = 1− tr(x∗y)/n.

• B(x , δ): ball of volume δ around x w/res to d(·, ·).
• Normalization: VolPU(2n) = 1

• For each δ > 0, there should be a “small” ` such that

PU(2n) ⊆
⋃

s∈S(`)

B(s, δ)

• Absolute best possible:

|S (`)| = 1/δ, |S (`)| = |S |` =⇒ ` = log|S |(1/δ)

• In addition: approximation should be efficiently computable.
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Golden Gates

Definition
A finite subset S ⊆ PU(2n) is a set of golden gates if:

1. Covering: There is c > 1 s.t.

δ` =
(log |S (`)|)c

|S (`)|
=⇒ Vol

PU(2n)−
⋃

s∈S(`)

B(s, δ`)

 `−→ 0

2. Growth: |S (`)| grows exponentially in `.

3. Navigation: given s ∈ 〈S〉, there is an efficient algorithm that
writes it as a word in S of the shortest possible length .

4. Approximation: There is constant N such that there is a
(randomized, heuristic) efficient algorithm inputting `, δ, x
such that there is s ∈ S (`) with x ∈ B(s, δ) and outputting
s ′ ∈ |S (`N)| with x ∈ B(s ′, δ).
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Main Result

Theorem ([DEP24])

There are sets of golden gates on PU(2n) for n = 2, 3.

• U(2n) can be written as a product of smaller unitary groups
=⇒ efficient gate sets for small n give less efficient gate sets
for larger n

• For actual application: 2-qubit gates most important, but
maybe other requirements for good physical constructions?

• =⇒ future work: find all 2-qubit examples

• Previous work: only n = 1,U(3) [Sar15], [PS18], [EP22],
• Key new difficulty: failures of Ramanujan Conjecture =⇒

automorphic bound drastically harder

• n = 2: explicit matrices computed

• n = 3: explicit matrices can be computed from [MSG12]
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Summary of Construction

• Step 1: 〈S〉 is a dense subgroup of PU(2n) that has a nice
Cayley graph B with respect to generating set S .

• Desired choice: B≈the 1-skeleton of a Bruhat-Tits building
• If possible: props. of BT buildings =⇒ growth, navigation

• Step 2: Key Idea: Such 〈S〉: from golden p-arithmetic
subgroups of U(2n)

• Step 2 subpart: find examples of these!

• Step 3: golden p-Arithmetic =⇒ covering rewritten as
Sarnak-Xue type bound on counts of automorphic reps

• Step 4: Prove bound w/ endoscopic classification [KMSW14]

• Step 5: approximation from orthogonal CS result [RS15]

Rest of the talk: steps 1-4 in more detail
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Growth+Navigation Overview

Goal: Construct good Γ ⊆ U(2n) generated by finite set S ⊆ Γ.

• Group + set of genrators 7→ Cayley graph

• Growth and Navigation from choosing group with good
Cayley graph

Precise Goal: Find a dense subgroup Γ ⊆ U(2n) generated by finite
set S 7→ Cayley graph satisfying:

• The number of vertices at distance ` from id grows
exponentially in `

• There is an easy way to find a path between any two vertices
• sufficient: easy way to compute distance between vertices
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Key Idea: Arithmetic Matrix Groups

Our Γ: from p-arithmetic matrix groups:

Key Motivating Example: SL2(Z[1/p]) ⊆ SL2R acts transitively on
infinite (p + 1)-regular tree

Expander Graphs Idea: SL2 7→ compact gp. allows simple action
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p-Arithmetic Subgroups

Goal: Generalize SL2(Z[1/p]) to U(2n)

• Idea: find algebraic matrix group G over Z[1/p] s.t.
G (R) = U(2n).

• Choose: imaginary quadratic extension E = Q(
√
−d)/Q.

• Choose: positive-definite 2n × 2n-Hermitian matrix H with
entries in integers OE .

• Same def. w/res to complex conjugation!
• other possibility: involution of second kind on division algebra

• Define: UE ,H as matrices g such that gHḡT = H.
• AG def: UE ,H(R) is such matrices g with entries in R ⊗Z OE

• Depends on choice of H and d

Upshot: UE ,H(Z[1/p]) generalizes to matrices with entries in
Z[
√
−d , 1/p] preserving H for p inert in OE , −d ≡ 3 (mod 4).
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Arithmetic Construction

Idea: Γ is one of these UE/H(Z[1/p]).

• Then: Γ acts on (a UE ,H(Qp) orbit of) vertices of the
Bruhat-Tits Building B for UE ,H(Qp).

• Motivating Example: SL2(Z[1/p]) on (p + 1)-regular tree

• In our case: Forget structure =⇒ B a graph w/ Γ action

• `-ball volume is exponential in `.

• Distance in B: Cartan Decomposition
• “p-adic singular value decomposition”

Only Remaining Desiderata: Γ acts simply, transitively on B.

• =⇒ B is the Cayley graph for Γ

• Gate set S : generators that take a point to its neighbors
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Adelic Perspective

Arithmetic lattices are simpler from an adelic perspective:

• Recall: Q has completions R and Qp. A is the restricted
direct product, diagonal Q ↪→ A discrete and cocompact

• Define: UE ,H(A), UE ,H(Q), UE ,H(Qp), UE ,H(Zp).

• Fact: UE ,H(Q) ↪→ UE ,H(A) discrete and cocompact

Arithmetic lattices ← open compact subgroups K∞ ⊆ UE ,H(A∞)

• For each p: define p-arithmetic lattice Λp := K∞,p ∩UE ,H(Q).

• Example: If K∞ = UE ,H(Ẑ), then Λp = UE ,H(Z[1/p]).

From definition of B:

• If Kp is special: the vertices of B are ≈UE ,H(Qp)/Kp.

• Translated Dessiderata: Find K∞ and p so that Λp acts
simply transitively on UE ,H(Qp)/Kp
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Golden Arithmetic Subroups

Definition
A compact open K∞ ⊆ UE ,H(A∞) is golden if

1. K∞UE ,H(Q) = UE ,H(A∞),

2. K∞ ∩ UE ,H(Q) = 1.

Key Property: if K∞ is golden, then;

UE ,H(Q)\UE ,H(A)/K∞
1
= UE ,H(R)/(K∞ ∩ UE ,H(Q))

2
= U(2n)

Variant: For all p: Λp acts on UE ,H(Qp)/Kp simply transitively

Key Limitation: 1 is rarely satisfied ([MSG12]: finitely many
examples with rank > 4, none with rank > 8)

• future work: find all examples with rank 4
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General Strategy

1Bδ : pullback of ind. function ball of volume δ at 1 ⊆ PU(2n).

• If S (`) covers PU(2n) efficiently ↔ it is evenly distributed

• =⇒ this should be close to the identity function 1 on U(2n):

1S(`) ? 1Bδ := |S (`)|−1
∑
s∈S(`)

1Bδ(s−1(∗))

Making this precise:

‖Proj1⊥(1S(`) ? 1Bδ)‖2
2 = ‖1S(`) ? 1Bδ − δ1‖

2
2

≥ δ2 Vol

U(2n)−
⋃

s∈S(`)

B(s, δ)


=⇒ Goal: Upper bound ‖1S(`) ? 1Bδ‖2

2
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Automorphic Interpretation

First Step: Understand operator 1S(`)?

Definition
An automorphic representation on UE ,H is an irreducible subrep.
of L2(UE ,H(Q)\UE ,H(A)) under right translation by UE ,H(A).

• Fact: G (R) compact =⇒ L2 decomposes as a ⊕ of irreps.

L2(UE ,H(Q)\UE ,H(A)) =
⊕

π∈AR(UE ,H)

π

• Recall: if K∞ is golden

L2(U(2n)) = L2(UE ,H(Q)\UE ,H(A))K
∞

=
⊕

π∈AR(UE ,H)

πK
∞

• Output: “UE ,H(A∞)”-action on L2(U(2n)) understandable
through information about the set AR(UE ,H).
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Automorphic Interpretation: Hecke Operators

First Step Strategy: Realize 1S(`)? operator in this extra “action”

• nice function f on UE ,H(A∞) 7→ covolution operator on reps:

f : π → π : f ? v =

∫
UE ,H(A∞)

f (g)g · v dg

• K∞ compact open =⇒ 1K∞gK∞ acts on πK
∞

.

Next: embed S (`) ↪→ UE ,H(Qp) ↪→ UE ,H(A∞):

• K∞ golden =⇒ 1K∞S(`)K∞ acts on L2(U(2n)).

• Recall: S (`)Kp is all v at dist. ` from v0

=⇒ KpS
(`)Kp = S (`)Kp =⇒ K∞S (`)K∞ = S (`)K∞

=⇒ whenever f ∈ πK∞
, 1K∞S(`)K∞ ? f = 1S(`) ? f
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p-Matrix Coefficient Decay

Updated Goal: Control ‖1S(`) ? 1Bδ‖2
2 by bounding projections of

1Bδ onto π ∈ AR(UE ,H) where 1S(`)? acts with large eigenvalues.

Define: σ(π, p) := inf{q > 2 : πK
∞

has p-matrix coeffs. in Lq}
• p-matrix coefficients: ways to embed πK

∞
into functions on

UE ,H(Qp)/Kp≈B consistently w/ Hecke-action

• Ramanujan Conjecture: σ(π, p) = 2 always, False in general!

Theorem ([Kam16])

For all ε > 0:

‖1S(`) ? |π‖op �ε |S (`)|(1+ε)
(

1− 1
σ(π,p)

)
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A Sarnak-Xue-Type Bound

Final Goal: Control ‖1S(`) ? 1Bδ‖2
2 by bounding projections of 1Bδ

onto π ∈ AR(UE ,H) with large σ(π, p).

Theorem ([DEP24])

For π ∈ AR(UE ,H), define

a(δ, π) :=
‖Projπ 1B̃δ‖

2
2

‖1
B̃δ
‖2

2

.

Then, for all ε > 0,∑
π:σ(π,p)≥σ0

a(δ, π)�ε δ
(1−ε)

(
1− 2

σ0

)
.

Interpretation: most of 1
B̃δ

avoids violations of Ramanujan
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Endoscopic Classification Input

How to prove bound? First,

Deep input from Aut. Rep. theory

• [KMSW14]: π ∈ AR(UE ,H) 7→ Arthur-SL2: SL2 → GL2n/C
• Invariant determining much useful info about π
• Requires: Arthur’s trace formula, Ngo’s proof the fundamental

lemma, stabilization of the trace formula, Moeglin and
Waldspurger’s work on twisted versions, relations between
Aubert involutions and intertwining operators, etc.

• +[Shi11, Car12, Clo13]: triv. A.-SL2 =⇒ σ(π, p) = 2 ∀p
• Intuitively: Ramanujan conjecture for UE ,H

• Requires: +theory of Shimura Varieties and their integral
models, Weil conjectures, etc.

• +[Mœg09]: Bound on σ(π, p) in terms of Arthur-SL2.
• Requires: classifications of p-adic reps of GLn/classical groups.

Upshot: rewrite bound in terms of Arthur-SL2 instead of σ(π, p).
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Computing a(δ, π)

Next, understand a(δ, π)

• Compute:

a(δ, π) = ‖Projπ∞ 1Bδ‖
2
2 dim((π∞)K

∞
)

= trπ∞(1Bδ ? 1Bδ) dim((π∞)K
∞

)

• U(2n) compact =⇒ π∞ is some finite dimensional πλ∞ with
highest weight λ∞.

• Kirillov’s orbit-method character formula explicitly computes

a(λ∞, δ) := trπλ∞ (1
B̃δ
? 1

B̃δ
)

• 1
B̃δ

: slight modification of 1Bδ for computational simplicity
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Putting it Together

Goal: 2: subset of AR(UE ,H) w/ some fixed Arthur-SL2. Bound:∑
π∈2

a(π, δ) =

Key Input: [DGG23, DGG24] finds explicit function d2(λ∞) s.t.∑
π∈2

π∞=πλ∞

dim((π∞)K
∞

)� d2(λ∞)

• d2(λ∞) is conjecturally optimal

• Req: End. class. [KMSW14] + inductive method of [Täı17] +
seed bound from [ST16] using simple trace formula of [Art89].

Final Step: plug in formulas for d2(λ∞), a(λ∞, δ) and sum!



QC Motivation Result Growth+Navigation Class number one Covering Aut. Bound Appendices

Putting it Together

Goal: 2: subset of AR(UE ,H) w/ some fixed Arthur-SL2. Bound:∑
π∈2

a(π, δ) =
∑
λ∞

a(λ∞, δ)
∑
π∈2

π∞=πλ∞

dim((π∞)K
∞

)

Key Input: [DGG23, DGG24] finds explicit function d2(λ∞) s.t.∑
π∈2

π∞=πλ∞

dim((π∞)K
∞

)� d2(λ∞)

• d2(λ∞) is conjecturally optimal

• Req: End. class. [KMSW14] + inductive method of [Täı17] +
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π∈2

π∞=πλ∞

dim((π∞)K
∞

)� d2(λ∞)

• d2(λ∞) is conjecturally optimal

• Req: End. class. [KMSW14] + inductive method of [Täı17] +
seed bound from [ST16] using simple trace formula of [Art89].

Final Step: plug in formulas for d2(λ∞), a(λ∞, δ) and sum!
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Appendix: Bruhat-Tits Building Details

Given reductive matrix group G/Qp, there is an associated
contractible simplicial complex B with a simplicial G (Qp)-action.

• Ex: if G = GL2/Qp, then B is an infinite (p + 1)-regular tree.

• Higher-dimensional generalization for higher-rank groups

Properties:

• B: union of equidimensional Euclidean subsets, apartments
• Any two simplices share a common apartment
• GL2/Qp: apartments are infinite two-sided paths, each ∼= R.

• If K is a maximal compact special subgroup, G (Qp)/K
embeds as a subset of the vertices of B.

• Consistent with G (Qp)-action
• K is the stabilizer of fixed vertex v0.
• GL2/Qp: G (Qp)/K is the vertices of the tree
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Example Apartments
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Appendix: Bounding decay from Arthur-SL2

Idea: Closure-Order Conjecture controls Langlands data for πp in
terms of Arthur-SL2.

• Langlands data: πp corresponds to tempered irrep σ and a
character χ on Levi

• χ controls matrix coefficient decay of πp

• Closure-Order Conjecture: Expected tight bound on χ

• True for “p-adic ABV-packets” of [CFM+22]
• Expected but not known: same as packets from end. classif.

Use Instead: [Mœg09], partial information towards conjecture

• Good enough for rank-4, 8 after combinatorial casework on
computer
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