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Note on technical details

e Anything in gray is a technical detail not relevant to this
particular topic

e Anything in orange we will only explain intuitively and
imprecisely due to time constraints.
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Outline

e Quantum Computing Motivation
e Results/Summary of Argument
e Argument step details

Draft available at: https:
//www.mat.univie.ac.at/~rdalal/GoldenGatesDraft.pdf


https://www.mat.univie.ac.at/~rdalal/GoldenGatesDraft.pdf
https://www.mat.univie.ac.at/~rdalal/GoldenGatesDraft.pdf
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Philosophy

This Talk: A problem from computer science that we can only
solve with the full power of modern automorphic theory
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Philosophy

This Talk: A problem from computer science that we can only
solve with the full power of modern automorphic theory

—> key takeways

e Langlands program, Arthur's classification, etc. are saying
concrete things about functions on real matrix groups

e some understandable to a college freshman or sophomore!
e Aut. reps. are important beyond number theory
e There are rewards for working beyond GLy

e maybe even a real-world application
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The Problem

Classical computers use classical circuits:
e Input: String of n bits in {0,1}": 01100....
e Circuit: some function {0,1}" — {0,1}™.
e Universal Gates: e.g. AND, OR, NOT can be used to build
any such function—need a good set to build computers
What about Quantum computers?
e Input: quantum superposition of all possible strings of n bits:
unit-norm vector in C{0-1}" >~ C2",
e Circuit: Projective Unitary map C2" — C2?" + measurements

Problem: Find a finite set S of “universal gates” in PU(2") that
can be multiplied to realize approximate any unitary matrix
C? — C%.
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What does it mean for a universal gate set S to approximate well?
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Mathematical Formulation

What does it mean for a universal gate set S to approximate well?
o SO set of words of minimum length exactly £ in S.
e Def: invar. distance on PU(2") e.g. d(x,y) =1 —tr(x*y)/n.
B(x,0): ball of volume ¢ around x w/res to d(-,-).
e Normalization: Vol PU(2") =1

For each 6 > 0, there should be a “small” ¢ such that

PURM < | B(s,9)
seS®)

Absolute best possible:

SO =175, SO =1S|" = ¢=log5(1/0)

In addition: approximation should be
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Definition
A finite subset S C PU(2") is a set of golden gates if:
1. Covering: Thereis ¢ > 1 s.t.

(log|S)))¢
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A finite subset S C PU(2") is a set of golden gates if:
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(log|S)))¢
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3. Navigation: given s € (S), there is an efficient algorithm that
writes it as a word in S of the shortest possible length .
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Golden Gates

Definition
A finite subset S C PU(2") is a set of golden gates if:
1. Covering: Thereis ¢ > 1 s.t.

(log |S©)|)e

ny l
g—W=>VOI PUR™) - | B(s,d)) | =0

seS®

2. Growth: |S(®)| grows exponentially in /.

3. Navigation: given s € (S), there is an efficient algorithm that
writes it as a word in S of the shortest possible length .

4. Approximation: There is constant N such that there is a
(randomized, heuristic) efficient algorithm inputting ¢, §, x
such that there is s € S() with x € B(s, §) and outputting
s’ € |SUN)| with x € B(s',6).
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Golden Gates

Definition
A finite subset S C PU(2") is a set of golden gates if:
1. Covering: There is ¢ > 1 s.t. (slightly weaker!)

(log |S®])°

= Vol [ PUR") ~ | B(s,00) | =0

seS)

2. Growth: |S®)| grows exponentially in £.

3. Navigation: given s € (S), there is an efficient algorithm that
writes it as a word in S of the shortest possible length .

4. Approximation: There is constant N such that there is a
(randomized, heuristic) efficient algorithm inputting ¢, d, x
such that there is s € S() with x € B(s, ) and outputting
s’ € |SUN)| with x € B(s',6).
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Main Result

Theorem ([DEP24])
There are sets of golden gates on PU(2") for n = 2,3.
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= efficient gate sets for small n give less efficient gate sets
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Main Result

Theorem ([DEP24])
There are sets of golden gates on PU(2") for n =2, 3.

e U(2") can be written as a product of smaller unitary groups
= efficient gate sets for small n give less efficient gate sets
for larger n

e For actual application: 2-qubit gates most important, but
maybe other requirements for good physical constructions?

o — future work: find all 2-qubit examples
e Previous work: only n =1, U(3) [Sarl5], [PS18], [EP22],

e Key new difficulty: failures of ==
automorphic bound drastically harder

e n = 2: explicit matrices computed

e n = 3: explicit matrices can be computed from [MSG12]
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Summary of Construction

e Step 1: (S) is a dense subgroup of PU(2") that has a nice
Cayley graph B with respect to generating set S.

o Desired choice: B~sthe 1-skeleton of a Bruhat-Tits building

e If possible: props. of BT buildings = growth, navigation
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Summary of Construction

e Step 1: (S) is a dense subgroup of PU(2") that has a nice
Cayley graph B with respect to generating set S.

o Desired choice: B~sthe 1-skeleton of a Bruhat-Tits building
e If possible: props. of BT buildings = growth, navigation

e Step 2: Key Idea: Such (S): from golden p-arithmetic
subgroups of U(2")
e Step 2 subpart: find examples of these!

e Step 3: golden p-Arithmetic = covering rewritten as
Sarnak-Xue type bound on counts of automorphic reps

e Step 4: Prove bound w/ endoscopic classification [KMSW14]
e Step 5: approximation from orthogonal CS result [RS15]
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Summary of Construction

e Step 1: (S) is a dense subgroup of PU(2") that has a nice
Cayley graph B with respect to generating set S.

o Desired choice: B~sthe 1-skeleton of a Bruhat-Tits building
e If possible: props. of BT buildings = growth, navigation

e Step 2: Key Idea: Such (S): from golden p-arithmetic
subgroups of U(2")
e Step 2 subpart: find examples of these!

e Step 3: golden p-Arithmetic = covering rewritten as
Sarnak-Xue type bound on counts of automorphic reps

e Step 4: Prove bound w/ endoscopic classification [KMSW14]
e Step 5: approximation from orthogonal CS result [RS15]

Rest of the talk: steps 1-4 in more detail
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Goal: Construct good I' C U(2") generated by finite set S C T
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Goal: Construct good I' C U(2") generated by finite set S C T
e Group + set of genrators — Cayley graph
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e Group + set of genrators —

e Growth and Navigation from choosing group with good
Cayley graph
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Cayley graph
Precise Goal: Find a dense subgroup I' C U(2") generated by finite
set S — Cayley graph satisfying:
e The number of vertices at distance ¢ from id grows
exponentially in ¢

e There is an easy way to find a path between any two vertices
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Growth+Navigation Overview

Goal: Construct good I' C U(2") generated by finite set S C T
e Group + set of genrators —
e Growth and Navigation from choosing group with good
Cayley graph
Precise Goal: Find a dense subgroup I' C U(2") generated by finite
set S — Cayley graph satisfying:
e The number of vertices at distance ¢ from id grows
exponentially in ¢
e There is an easy way to find a path between any two vertices
e sufficient: easy way to compute distance between vertices
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Key Idea: Arithmetic Matrix Groups

Our I': from p-arithmetic matrix groups:

Key Motivating Example: SLy(Z[1/p]) C SLoR acts transitively on
infinite (p + 1)-regular tree
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Key Idea: Arithmetic Matrix Groups

Our I': from p-arithmetic matrix groups:

Key Motivating Example: SLy(Z[1/p]) C SLoR acts transitively on
infinite (p + 1)-regular tree

Expander Graphs Idea: SL, — compact gp. allows simple action
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p-Arithmetic Subgroups

Goal: Generalize SLy(Z[1/p]) to U(2")
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p-Arithmetic Subgroups

Goal: Generalize SLy(Z[1/p]) to U(2")

e Idea: find algebraic matrix group G over Z[1/p] s.t.
G(R) = U(2").
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p-Arithmetic Subgroups

Goal: Generalize SLy(Z[1/p]) to U(2")

e Idea: find algebraic matrix group G over Z[1/p] s.t.
G(R) = U(2").

e Choose: imaginary quadratic extension E = Q(v/—d)/Q.
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p-Arithmetic Subgroups

Goal: Generalize SLy(Z[1/p]) to U(2")
e Idea: find algebraic matrix group G over Z[1/p] s.t.
G(R) = U(2").
e Choose: imaginary quadratic extension E = Q(v/—d)/Q.
e Choose: positive-definite 2" x 2"-Hermitian matrix H with
entries in integers OF.

e Same def. w/res to complex conjugation!
e other possibility: involution of second kind on division algebra
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e other possibility: involution of second kind on division algebra
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p-Arithmetic Subgroups

Goal: Generalize SLy(Z[1/p]) to U(2")
e Idea: find algebraic matrix group G over Z[1/p] s.t.
G(R) = U(2M).
e Choose: imaginary quadratic extension E = Q(v/—d)/Q.
e Choose: positive-definite 2" x 2"-Hermitian matrix H with
entries in integers Op. 271 < 271 integer matrix
e Same def. w/res to complex conjugation!
e other possibility: involution of second kind on division algebra
e Define: UEH as matrices g such that gHg" = H.
e AG def: UEH(R) is such matrices g with entries in R ®7 Of
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p-Arithmetic Subgroups

Goal: Generalize SLy(Z[1/p]) to U(2")
e Idea: find algebraic matrix group G over Z[1/p] s.t.
G(R) = U(2").
e Choose: imaginary quadratic extension E = Q(v/—d)/Q.

e Choose: positive-definite 2" x 2"-Hermitian matrix H with
entries in integers Op. 271 < 271 integer matrix

e Same def. w/res to complex conjugation!
e other possibility: involution of second kind on division algebra

e Define: UEH as matrices g such that gHg" = H.
e AG def: UEH(R) is such matrices g with entries in R ®7 Of

e Depends on choice of H and d
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p-Arithmetic Subgroups

Goal: Generalize SLy(Z[1/p]) to U(2")
e Idea: find algebraic matrix group G over Z[1/p] s.t.
G(R) = U(2").
e Choose: imaginary quadratic extension E = Q(v/—d)/Q.

e Choose: positive-definite 2" x 2"-Hermitian matrix H with
entries in integers Op. 271 < 271 integer matrix

e Same def. w/res to complex conjugation!
e other possibility: involution of second kind on division algebra

e Define: UEH as matrices g such that gHg" = H.
e AG def: UEH(R) is such matrices g with entries in R ®7 Of
e Depends on choice of H and d

Upshot: UEH(Z[1/p]) generalizes to matrices with entries in
Z|V/—d,1/p] preserving H for p inert in Op, —d =3 (mod 4).
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Arithmetic Construction

Idea: T is one of these UE/H(Z[1/p]).
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Arithmetic Construction

Idea: T is one of these UE/H(Z[1/p]).

o Then: T acts on (a UE(Q,) orbit of) vertices of the
Bruhat-Tits Building B for UE-H(Qp).
e Motivating Example: SLao(Z[1/p]) on (p + 1)-regular tree
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Arithmetic Construction

Idea: T is one of these UE/H(Z[1/p]).

e Then: I acts on (a U5 (Q),) orbit of) vertices of the
Bruhat-Tits Building B for UE-H(Qp).
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e In our case: Forget structure = B a graph w/ I action
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Arithmetic Construction

Idea: T is one of these UE/H(Z[1/p]).
e Then: I acts on (a U5 (Q),) orbit of) vertices of the
B for UEH(Q)).
e Motivating Example: SLao(Z[1/p]) on (p + 1)-regular tree

e In our case: Forget structure = B a graph w/ I action
e /-ball volume is exponential in /.

e Distance in B:
e “p-adic singular value decomposition”

Only Remaining Desiderata: ' acts simply, transitively on B.

e — [ is the Cayley graph for I
e Gate set S: generators that take a point to its neighbors
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Adelic Perspective

Arithmetic lattices are simpler from an adelic perspective:

e Recall: Q has R and Qp. A is the
direct product, diagonal Q@ — A discrete and cocompact

o Define: UEH(A), UEH(Q), UEH(Q,), UEH(Zy).
e Fact: UEH(Q) — UEH(A) discrete and cocompact
Arithmetic lattices <— open compact subgroups K> C UEH(A>)
e For each p: define p-arithmetic lattice A, := K>P 0 UEH(Q).
o Example: If K> = UEH(Z), then A, = UEH(Z[1/p]).
From definition of B:
o If K, is . the vertices of B are ~UEH(Q,)/Kp.

e Translated Dessiderata: Find K°° and p so that A, acts
simply transitively on UEH(Q,)/K,
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Definition

A compact open K> C UEH(A>) is golden if
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Key Property: if K is golden, then;

Appendices
000

UEH(Q)\UEH(A)/K> £ UBH(R) /(K> n UEH(Q)) = U(2")
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Definition

A compact open K= C UEH(A>) is golden if
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Key Property: if K is golden, then;
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Golden Arithmetic Subroups

Definition

A compact open K= C UEH(A>) is golden if
1. ,
2. K*NUBH Q) =1.

Key Property: if K is golden, then;
UBH@\USH(A) /K> = URH(R) /(K> n USH(@) 2 U(2")

Variant: For all p: A, acts on UE’H(QP)/KP simply transitively

Key Limitation: 1 is rarely satisfied ([MSG12]: finitely many
examples with rank > 4, none with rank > 8)

o future work: find all examples with rank 4
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General Strategy

1p,: pullback of ind. function ball of volume ¢ at 1 C PU(2").
o If S() covers PU(2") efficiently <+ it is evenly distributed
e = this should be close to the identity function 1 on U(2"):

g * 1, =[SO > 15(s71(x))

. . . seS)
Making this precise:

IProjie (150 * 18,)[15 = 150 * 16, — 013

> 6% Vol [ U2") — | B(s,9)
seS®)

= Goal: Upper bound ||15¢) * 15,13
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of L2(UEH(Q)\UEH(A)) under right translation by UE-"(A).
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First Step: Understand operator 1)

Definition
An on UE-H is an irreducible subrep.
of L2(UEH(Q)\UEH(A)) under right translation by UE-"(A).

e Fact: G(R) compact == L? decomposes as a @ of irreps.
LUEAQ\UE Ay = @
TEAR(UEH)

e Recall: if K™ is golden

L2(U@M) = PUEFQNUER )T = P n

rEAR(UEH)

KOO
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Automorphic Interpretation
First Step: Understand operator 1)

Definition
An on UE-H is an irreducible subrep.
of L2(UEH(Q)\UEH(A)) under right translation by UE-"(A).

e Fact: G(R) compact == L? decomposes as a @ of irreps.
LUEAQ\UE Ay = @
TEAR(UEH)
e Recall: if K™ is golden
L2(U@") = USPQ\UET AN = P«
TEAR(UEH)

e Output: "UEH(A>)"-action on L2(U(2")) understandable
through information about the set AR(UEH).
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Automorphic Interpretation: Hecke Operators

First Step Strategy: Realize 15¢)* operator in this extra “action”

e nice function f on UEH(A>)  covolution operator on reps:

f:7r—>7r:f*v:/ flglg-v
UE,H(Aoo)

® K™ compact open == lkoogkoo acts on oK.
Next: embed S() — UEH(Q,) — UEH(A®):
o K golden = 1cske acts on L2(U(27)).

e Recall: S(E)Kp is all v at dist. £ from v
— K,SVK,=5K, —= K*®SOK> = 5K

= whenever f € 7K, 1 oo % f = Lguy % f
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p-Matrix Coefficient Decay

Updated Goal: Control |14 x 15,||3 by bounding projections of
1p, onto m € AR(UEH) where 14 acts with large eigenvalues.

Define: o(m,p) := inf{qg > 2 : 7K™ has p-matrix coeffs. in L9}
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1p, onto m € AR(UEH) where 14 acts with large eigenvalues.

Define: o(m,p) := inf{qg > 2 : 7K™ has in L9}
° ways to embed 7K into functions on
UEH(Q,)/Kp~B consistently w/ Hecke-action
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Updated Goal: Control |14 x 15,||3 by bounding projections of
1p, onto m € AR(UEH) where 14 acts with large eigenvalues.

Define: o(m,p) := inf{qg > 2 : 7K™ has in L9}
e p-matrix coefficients: ways to embed 7K™ into functions on
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. . o(m, p) = 2 always, False in general!
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For all e > 0:
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p-Matrix Coefficient Decay

Updated Goal: Control |14 x 15,||3 by bounding projections of
1p, onto m € AR(UEH) where 14 acts with large eigenvalues.

Define: o(m,p) := inf{qg > 2 : 7K™ has in L9}
e p-matrix coefficients: ways to embed 7K™ into functions on
UEH(Q,)/Kp~B consistently w/ Hecke-action

. . o(m, p) = 2 always, False in general!

Theorem ([Kam16])
For all e > 0:

1
1150 * |xllop <e !S(Z)y(lﬂ)(l )
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onto m € AR(UEH) with large o(7, p).
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A Sarnak-Xue-Type Bound

Final Goal: Control |15 * 1p,]|3 by bounding projections of 1,
onto ™ € AR(UEH) with large o(r, p).

Theorem ([DEP24])

For m € AR(UEH), define

I Proj, 1, I

115,12

a(o,m

Then, for all ¢ > 0,

> a(b,m) < s1-9(1-%)

mo(m,p)>o0
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A Sarnak-Xue-Type Bound

Final Goal: Control |15 * 1p,]|3 by bounding projections of 1,
onto m € AR(UEH) with large o(7, p).

Theorem ([DEP24])
For m € AR(UEH), define

I Proj, 1, I

115,12

a(o,m

Then, for all ¢ > 0,

> a(b,m) < s1-9(1-%)
mo(m,p)>o0

Interpretation: most of 1;35 avoids violations of Ramanujan
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How to prove bound? First, Deep input from Aut. Rep. theory
o [KMSW14]: 7 € AR(UEH) — : SLy — GLon/C
e Invariant determining much useful info about 7
e Requires: Arthur's trace formula, Ngo's proof the fundamental
lemma, stabilization of the trace formula, Moeglin and
Waldspurger's work on twisted versions, relations between
Aubert involutions and intertwining operators, etc.
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Endoscopic Classification Input

How to prove bound? First, Deep input from Aut. Rep. theory
o [KMSW14]: 7 € AR(UEH) — : SLy — GLon/C
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How to prove bound? First, Deep input from Aut. Rep. theory
o [KMSW14]: 7 € AR(UEH) — : SLy — GLon/C
e Invariant determining much useful info about 7
e Requires: Arthur's trace formula, Ngo's proof the fundamental
lemma, stabilization of the trace formula, Moeglin and
Waldspurger's work on twisted versions, relations between
Aubert involutions and intertwining operators, etc.

e +[Shill, Carl2, Clol3]: triv. A.-SLy = o(m,p) =2Vp
e Intuitively: Ramanujan conjecture for U5-H

e Requires: +theory of Shimura Varieties and their integral
models, Weil conjectures, etc.

o +[Moceg09]: Bound on o(m, p) in terms of Arthur-SLo.
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o [KMSW14]: 7 € AR(UEH) — : SLy — GLon/C
e Invariant determining much useful info about 7
e Requires: Arthur's trace formula, Ngo's proof the fundamental
lemma, stabilization of the trace formula, Moeglin and
Waldspurger's work on twisted versions, relations between
Aubert involutions and intertwining operators, etc.
e +[Shill, Carl2, Clo13]: triv. A.-SLy = o(m, p) =2Vp
e Intuitively: Ramanujan conjecture for U5-H
e Requires: +theory of Shimura Varieties and their integral
models, Weil conjectures, etc.

o +[Moceg09]: Bound on o(m, p) in terms of Arthur-SLo.
e Requires: classifications of p-adic reps of GL,/classical groups.
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Endoscopic Classification Input

How to prove bound? First, Deep input from Aut. Rep. theory
o [KMSW14]: 7 € AR(UEH) — : SLy — GLon/C
e Invariant determining much useful info about 7
e Requires: Arthur's trace formula, Ngo's proof the fundamental
lemma, stabilization of the trace formula, Moeglin and
Waldspurger's work on twisted versions, relations between
Aubert involutions and intertwining operators, etc.
e +[Shill, Carl2, Clo13]: triv. A.-SLy = o(m, p) =2Vp
e Intuitively: Ramanujan conjecture for U5-H
e Requires: +theory of Shimura Varieties and their integral
models, Weil conjectures, etc.
o +[Moceg09]: Bound on o(m, p) in terms of Arthur-SLo.
e Requires: classifications of p-adic reps of GL,/classical groups.

Upshot: rewrite bound in terms of Arthur-SL; instead of o(, p).
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Next, understand a(d, )
e Compute:

a(0,m) = || Proj,__ 1,]/3dim((x>)"™)
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Next, understand a(d, )
e Compute:
_ . 2 o0 \K®
a(d,m) = || Proj_ 1g;ll5 dim((7>)" ")
=tr.(1g, x1g,) dim((woo)Koo)

e U(2") compact = 74 is some finite dimensional 7, _ with
highest weight Aso.
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Computing a(d, )

Next, understand a(d, )

e Compute:

a(6,m) = || Proj,__ 1[5 dim((7>)"™)
=tr.(1g, x1g,) dim((woo)Koo)

e U(2") compact = 74 is some finite dimensional 7, _ with
highest weight Aso.

e Kirillov's orbit-method character formula explicitly computes

B(AOO, 5) =1t (léa * 1§5)
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Computing a(d, )

Next, understand a(d, )

e Compute:

a(d,m) = || Projr., 1g,I3 dim((z>)"™)

=trr.(1g; x15,) dim((ﬂoo)Koo)

e U(2") compact = 7, is some finite dimensional with
Ao

° explicitly computes
3(Aoo,0) = trm, (15 %1;)

° . slight modification of 1p, for computational simplicity
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Putting it Together

Goal: O0: subset of AR(UE M) w/ some fixed Arthur-SL,. Bound:

Za(w,é)zz (Ao, 0) Z dim((7>)K™)
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wed wed
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Goal: O0: subset of AR(UE M) w/ some fixed Arthur-SL,. Bound:

Za(w,é)zz (Ao, 0) Z dim((7>)K™)
Aoo

Tea med
Too =T N\ o

Key Input: [DGG23, DGG24] finds explicit function dg(Aso) s.t.
D> dim (7)) < dp(Aeo)

med
Too =T Aoo
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Putting it Together

Goal: O0: subset of AR(UE M) w/ some fixed Arthur-SL,. Bound:

Za(w,é)zz (Ao, 0) Z dim((7>)K™)
Aoo

wed wed
7'('oo:7r)\oo

Key Input: [DGG23, DGG24] finds explicit function dg(Aso) s.t.

D dim((r®)K7) < dp(Aeo)

e do(A\x) is conjecturally optimal
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Goal: O0: subset of AR(UE M) w/ some fixed Arthur-SL,. Bound:

Za(w,é)zz (Ao, 0) Z dim((7>)K™)
Aoo

Tea mel
Too =T\ o

Key Input: [DGG23, DGG24] finds explicit function dg(Aso) s.t.

D dim((r®)K7) < dp(Aeo)

med
Too =T Ao

e do(A\x) is conjecturally optimal

e Req: End. class. [KMSW14] + inductive method of [Tail7] +
seed bound from [ST16] using simple trace formula of [Art89].
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Putting it Together

Goal: O0: subset of AR(UE M) w/ some fixed Arthur-SL,. Bound:

Za(w,é)zz (Ao, 0) Z dim((7>)K™)
Aoo

Tea mel
Too =T\ o

Key Input: [DGG23, DGG24] finds explicit function dg(Aso) s.t.

D dim((r®)K7) < dp(Aeo)

med
Too =T Ao

e do(A\x) is conjecturally optimal

e Req: End. class. [KMSW14] + inductive method of [Tail7] +
seed bound from [ST16] using simple trace formula of [Art89].

Final Step: plug in formulas for dg(As), a(Aso, d) and sum!



QC Motivation Result Growth+Navigation Class number one Covering Aut. Bound Appendices
0000 [e]e) 0000 [e]e] 00000 000 @00

Appendix: Bruhat-Tits Building Details

Given reductive matrix group G/Qp, there is an associated
contractible simplicial complex B with a simplicial G(Qp)-action.
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Appendix: Bruhat-Tits Building Details

Given reductive matrix group G/Qp, there is an associated
contractible simplicial complex B with a simplicial G(Qp)-action.

e Ex: if G = GLy/Qp, then B is an infinite (p + 1)-regular tree.
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Appendix: Bruhat-Tits Building Details

Given reductive matrix group G/Qp, there is an associated
contractible simplicial complex B with a simplicial G(Qp)-action.

e Ex: if G = GL2/Q)p, then B is an infinite (p + 1)-regular tree.

e Higher-dimensional generalization for higher-rank groups
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Appendix: Bruhat-Tits Building Details

Given reductive matrix group G/Qp, there is an associated
contractible simplicial complex B with a simplicial G(Qp)-action.

e Ex: if G = GL2/Q)p, then B is an infinite (p + 1)-regular tree.
e Higher-dimensional generalization for higher-rank groups

Properties:
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Appendix: Bruhat-Tits Building Details

Given matrix group G/Qp, there is an associated
B with a simplicial G(Q,)-action.
e Ex: if G = GL2/Q)p, then B is an infinite (p + 1)-regular tree.
e Higher-dimensional generalization for higher-rank groups
Properties:

e [3: union of equidimensional Euclidean subsets,

e Any two simplices share a common apartment
e GL,/Q,: apartments are infinite two-sided paths, each = R.
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Appendix: Bruhat-Tits Building Details

Given matrix group G/Qp, there is an associated
B with a simplicial G(Q,)-action.

e Ex: if G = GL2/Q)p, then B is an infinite (p + 1)-regular tree.
e Higher-dimensional generalization for higher-rank groups

Properties:
e [3: union of equidimensional Euclidean subsets,
e Any two simplices share a common apartment
e GL,/Q,: apartments are infinite two-sided paths, each = R.
e If K is a maximal compact subgroup, G(Q,)/K
embeds as a subset of the vertices of 5.

o Consistent with G(Q),)-action
e K is the stabilizer of fixed vertex vg.
e GL2/Qp: G(Qp)/K is the vertices of the tree



QC Motivation Result
0000 0o

Growth+Navigation
0000

Class number one
oo

Covering Aut. Bound Appendices
00000 000 [e] Jo)
Example Apartments




QC Motivation Result Growth+Navigation Class number one Covering Aut. Bound Appendices
0000 [e]e) 0000 (e} 00000 000 ooe

Appendix: Bounding decay from Arthur-SL;

Idea: Closure-Order Conjecture controls Langlands data for 7, in
terms of Arthur-SL,.
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Appendix: Bounding decay from Arthur-SL;

Idea: Closure-Order Conjecture controls Langlands data for 7, in
terms of Arthur-SL,.

e Langlands data: mp, corresponds to tempered irrep o and a
character x on Levi

e x controls matrix coefficient decay of 7,
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Appendix: Bounding decay from Arthur-SL;

Idea: Closure-Order Conjecture controls Langlands data for 7, in
terms of Arthur-SL,.

e Langlands data: 7, corresponds to tempered irrep o and a
character x on Levi

e x controls matrix coefficient decay of 7,

o Closure-Order Conjecture: Expected tight bound on x
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Appendix: Bounding decay from Arthur-SL;

Idea: controls Langlands data for 7, in
terms of Arthur-SLo.

e Langlands data: 7, corresponds to tempered irrep o and a
character x on Levi

e x controls matrix coefficient decay of 7,

e Closure-Order Conjecture: Expected tight bound on x
e True for of [CFMT22]
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Idea: controls Langlands data for 7, in
terms of Arthur-SLo.

e Langlands data: 7, corresponds to tempered irrep o and a
character x on Levi

e x controls matrix coefficient decay of 7,

e Closure-Order Conjecture: Expected tight bound on x
e True for of [CFMT22]

e Expected but not known: same as packets from end. classif.
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Appendix: Bounding decay from Arthur-SL;

Idea: controls Langlands data for 7, in
terms of Arthur-SLo.

e Langlands data: 7, corresponds to tempered irrep o and a
character x on Levi

e x controls matrix coefficient decay of 7,

e Closure-Order Conjecture: Expected tight bound on x
o True for “p-adic ABV-packets” of [CFMT22]

e Expected but not known: same as packets from end. classif.

Use Instead: [Moeg09], partial information towards
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Appendix: Bounding decay from Arthur-SL,

Idea: controls Langlands data for 7, in
terms of Arthur-SLo.

e Langlands data: 7, corresponds to tempered irrep o and a
character x on Levi

e x controls matrix coefficient decay of 7,

e Closure-Order Conjecture: Expected tight bound on x
o True for “p-adic ABV-packets” of [CFMT22]

e Expected but not known: same as packets from end. classif.
Use Instead: [Moeg09], partial information towards

e Good enough for rank-4, 8 after combinatorial casework on
computer



QC Motivation Result Growth+Navigation Class number one Covering Aut. Bound Appendices
0000 [e]e) 0000 [e]e] 00000 000 000

Papers Mentioned |

James Arthur, The L2-Lefschetz numbers of Hecke operators, Invent. Math. 97 (1989), no. 2, 257-290. MR
1001841

Ana Caraiani, Local-global compatibility and the action of monodromy on nearby cycles, Duke
Mathematical Journal 161 (2012), no. 12, 2311-2413.

Clifton Cunningham, Andrew Fiori, Ahmed Moussaoui, James Mracek, and Bin Xu, Arthur packets for

p-adic groups by way of microlocal vanishing cycles of perverse sheaves, with examples.

L. Clozel, Purity reigns supreme, International Mathematics Research Notices 2013 (2013), no. 2, 328-346.

Rahul Dalal, Shai Evra, and Ori Parzanchevski, Golden gates in PU(N),
“https://www.mat.univie.ac.at/~rdalal/GoldenGatesDraft.pdf”, 2024.

Rahul Dalal and Mathilde Gerbelli-Gauthier, Statistics of cohomological automorphic representations on
unitary groups via the endoscopic classification, 2023.

, Root number equidistribution for self-dual automorphic representations on gl,, 2024.

Shai Evra and Ori Parzanchevski, Ramanujan complexes and golden gates in PU(3), Geom. Funct. Anal. 32
(2022), no. 2, 193-235. MR 4408431

Amitay Kamber, L,-expander complexes, arXiv:1701.00154 (2016).

Tasho Kaletha, Alberto Minguez, Sug Woo Shin, and Paul-James White, Endoscopic classification of
representations: inner forms of unitary groups, arXiv preprint arXiv:1409.3731 (2014).

) D WE B DE & D E

Colette Moeglin, Comparaison des paramétres de Langlands et des exposants a l'intérieur d'un paquet
d’Arthur, J. Lie Theory 19 (2009), no. 4, 797-840.


https://www.mat.univie.ac.at/~rdalal/GoldenGatesDraft.pdf

QC Motivation Result Growth+Navigation Class number one Covering Aut. Bound Appendices

0000

E

) & D E

(e]e] 0000 (e} 00000 000 000

Papers Mentioned Il

A. Mohammadi and A. Salehi Golsefidy, Discrete subgroups acting transitively on vertices of a Bruhat—Tits
building, Duke Mathematical Journal 161 (2012), no. 3, 483-544.

Ori Parzanchevski and Peter Sarnak, Super-golden-gates for PU(2), Adv. Math. 327 (2018), 869-901. MR
3762004
Neil J Ross and Peter Selinger, Optimal ancilla-free Clifford+V approximation of z-rotations, Quantum

Information & Computation 15 (2015), no. 11-12, 932-950.

P. Sarnak, Letter to Aaronson and Pollington on the Solvay-Kitaev Theorem and Golden Gates, 2015,
https://publications.ias.edu/sarnak/paper/2637.

Sug Woo Shin, Galois representations arising from some compact Shimura varieties, Ann. of Math. (2) 173
(2011), no. 3, 1645-1741. MR 2800722

Sug Woo Shin and Nicolas Templier, Sato-Tate theorem for families and low-lying zeros of automorphic
L-functions, Invent. Math. 203 (2016), no. 1, 1-177, Appendix A by Robert Kottwitz, and Appendix B by
Raf Cluckers, Julia Gordon and Immanuel Halupczok. MR 3437869

Olivier Taibi, Dimensions of spaces of level one automorphic forms for split classical groups using the trace
formula, Ann. Sci. Ec. Norm. Supér. (4) 50 (2017), no. 2, 269-344. MR 3621432

Contact info: rahul.dalal@univie.ac.at



	QC Motivation
	Result
	Growth+Navigation
	Class number one
	Covering
	Aut. Bound
	Appendices

