Automorphic Representations and "Golden" Quantum Logic Gates

Rahul Dalal (Joint w/Shai Evra and Ori Parzanchevski)

April 7, 2025

Note on technical details

- Anything in gray is a technical detail not relevant to this particular topic
- Anything in orange we will only explain intuitively and imprecisely due to time constraints.

Outline

- Quantum Computing Motivation
- Results/Summary of Argument
- Argument step details

```
Draft available at: https:
//www.mat.univie.ac.at/~rdalal/GoldenGatesDraft.pdf
```

This Talk: A problem from computer science that we can only solve with the full power of modern automorphic theory

⇒ key takeways

- ⇒ key takeways
 - Langlands program, Arthur's classification, etc. are saying concrete things about functions on real matrix groups
 - some understandable to a college freshman or sophomore!

- ⇒ key takeways
 - Langlands program, Arthur's classification, etc. are saying concrete things about functions on real matrix groups
 - some understandable to a college freshman or sophomore!
 - Aut. reps. are important beyond number theory

- ⇒ key takeways
 - Langlands program, Arthur's classification, etc. are saying concrete things about functions on real matrix groups
 - some understandable to a college freshman or sophomore!
 - Aut. reps. are important beyond number theory
 - There are rewards for working beyond GL_N
 - maybe even a real-world application

Classical computers use classical circuits:

Classical computers use classical circuits:

- Input: String of *n* bits in $\{0,1\}^n$: 01100....
- Circuit: some function $\{0,1\}^n \to \{0,1\}^m$.

Classical computers use classical circuits:

- Input: String of *n* bits in $\{0,1\}^n$: 01100....
- Circuit: some function $\{0,1\}^n \to \{0,1\}^m$.
- Universal Gates: e.g. AND, OR, NOT can be used to build any such function—need a good set to build computers

Classical computers use classical circuits:

- Input: String of n bits in $\{0,1\}^n$: 01100....
- Circuit: some function $\{0,1\}^n \to \{0,1\}^m$.
- Universal Gates: e.g. AND, OR, NOT can be used to build any such function—need a good set to build computers

What about Quantum computers? Quantum Circuits

Classical computers use classical circuits:

- Input: String of *n* bits in $\{0,1\}^n$: 01100....
- Circuit: some function $\{0,1\}^n \to \{0,1\}^m$.
- Universal Gates: e.g. AND, OR, NOT can be used to build any such function—need a good set to build computers

What about Quantum computers? Quantum Circuits

• Input: quantum superposition of all possible strings of n bits: unit-norm vector in $\mathbb{C}^{\{0,1\}^n} \cong \mathbb{C}^{2^n}$.

Classical computers use classical circuits:

- Input: String of n bits in $\{0,1\}^n$: 01100....
- Circuit: some function $\{0,1\}^n \to \{0,1\}^m$.
- Universal Gates: e.g. AND, OR, NOT can be used to build any such function—need a good set to build computers

What about Quantum computers? Quantum Circuits

- Input: quantum superposition of all possible strings of n bits: unit-norm vector in $\mathbb{C}^{\{0,1\}^n} \cong \mathbb{C}^{2^n}$.
- Circuit: Projective Unitary map $\mathbb{C}^{2^n} \to \mathbb{C}^{2^n} +$ measurements

Classical computers use classical circuits:

- Input: String of n bits in $\{0,1\}^n$: 01100....
- Circuit: some function $\{0,1\}^n \to \{0,1\}^m$.
- Universal Gates: e.g. AND, OR, NOT can be used to build any such function—need a good set to build computers

What about Quantum computers? Quantum Circuits

- Input: quantum superposition of all possible strings of n bits: unit-norm vector in $\mathbb{C}^{\{0,1\}^n} \cong \mathbb{C}^{2^n}$.
- Circuit: Projective Unitary map $\mathbb{C}^{2^n} \to \mathbb{C}^{2^n} +$ measurements

Problem: Find a finite set S of "universal gates" in $PU(2^n)$ that can be multiplied to realize any unitary matrix $\mathbb{C}^{2^n} \to \mathbb{C}^{2^n}$.

Classical computers use classical circuits:

- Input: String of *n* bits in $\{0,1\}^n$: 01100....
- Circuit: some function $\{0,1\}^n \to \{0,1\}^m$.
- Universal Gates: e.g. AND, OR, NOT can be used to build any such function—need a good set to build computers

What about Quantum computers? Quantum Circuits

- Input: quantum superposition of all possible strings of n bits: unit-norm vector in $\mathbb{C}^{\{0,1\}^n} \cong \mathbb{C}^{2^n}$.
- ullet Circuit: Projective Unitary map $\mathbb{C}^{2^n} o \mathbb{C}^{2^n} +$ measurements

Problem: Find a finite set S of "universal gates" in $PU(2^n)$ that can be multiplied to realize approximate any unitary matrix $\mathbb{C}^{2^n} \to \mathbb{C}^{2^n}$.

What does it mean for a universal gate set S to approximate well?

• $S^{(\ell)}$: set of words of minimum length exactly ℓ in S.

- $S^{(\ell)}$: set of words of minimum length exactly ℓ in S.
- Def: invar. distance on $PU(2^n)$ e.g. $d(x,y) = 1 tr(x^*y)/n$.

- $S^{(\ell)}$: set of words of minimum length exactly ℓ in S.
- Def: invar. distance on $PU(2^n)$ e.g. $d(x,y) = 1 tr(x^*y)/n$.
- $B(x, \delta)$: ball of volume δ around x w/res to $d(\cdot, \cdot)$.
 - Normalization: $\operatorname{Vol} PU(2^n) = 1$

- $S^{(\ell)}$: set of words of minimum length exactly ℓ in S.
- Def: invar. distance on $PU(2^n)$ e.g. $d(x,y) = 1 \operatorname{tr}(x^*y)/n$.
- $B(x, \delta)$: ball of volume δ around x w/res to $d(\cdot, \cdot)$.
 - Normalization: $\operatorname{Vol} PU(2^n) = 1$
- For each $\delta > 0$, there should be a "small" ℓ such that

$$PU(2^n) \subseteq \bigcup_{s \in S(\ell)} B(s, \delta)$$

What does it mean for a universal gate set S to approximate well?

- $S^{(\ell)}$: set of words of minimum length exactly ℓ in S.
- Def: invar. distance on $PU(2^n)$ e.g. $d(x,y) = 1 tr(x^*y)/n$.
- $B(x, \delta)$: ball of *volume* δ around x w/res to $d(\cdot, \cdot)$.
 - Normalization: $\operatorname{Vol} PU(2^n) = 1$
- For each $\delta > 0$, there should be a "small" ℓ such that

$$PU(2^n) \subseteq \bigcup_{s \in S(\ell)} B(s, \delta)$$

Absolute best possible:

$$|S^{(\ell)}| = 1/\delta, \qquad |S^{(\ell)}| = |S|^{\ell} \implies \ell = \log_{|S|}(1/\delta)$$

What does it mean for a universal gate set S to approximate well?

- $S^{(\ell)}$: set of words of minimum length exactly ℓ in S.
- Def: invar. distance on $PU(2^n)$ e.g. $d(x, y) = 1 tr(x^*y)/n$.
- $B(x, \delta)$: ball of *volume* δ around x w/res to $d(\cdot, \cdot)$.
 - Normalization: $\operatorname{Vol} PU(2^n) = 1$
- For each $\delta > 0$, there should be a "small" ℓ such that

$$PU(2^n) \subseteq \bigcup_{s \in S(\ell)} B(s, \delta)$$

Absolute best possible:

$$|S^{(\ell)}| = 1/\delta, \qquad |S^{(\ell)}| = |S|^{\ell} \implies \ell = \log_{|S|}(1/\delta)$$

• In addition: approximation should be efficiently computable.

Definition

A finite subset $S \subseteq PU(2^n)$ is a set of golden gates if:

Definition

A finite subset $S \subseteq PU(2^n)$ is a set of golden gates if:

1. Covering: There is c > 1 s.t.

$$\delta_{\ell} = \frac{(\log |S^{(\ell)}|)^{c}}{|S^{(\ell)}|} \implies \operatorname{Vol}\left(PU(2^{n}) - \bigcup_{s \in S^{(\ell)}} B(s, \delta_{\ell})\right) \stackrel{\ell}{\to} 0$$

Definition

A finite subset $S \subseteq PU(2^n)$ is a set of golden gates if:

1. Covering: There is c > 1 s.t.

$$\delta_{\ell} = \frac{(\log |S^{(\ell)}|)^{c}}{|S^{(\ell)}|} \implies \operatorname{Vol}\left(PU(2^{n}) - \bigcup_{s \in S^{(\ell)}} B(s, \delta_{\ell})\right) \xrightarrow{\ell} 0$$

2. Growth: $|S^{(\ell)}|$ grows exponentially in ℓ .

Definition

A finite subset $S \subseteq PU(2^n)$ is a set of golden gates if:

1. Covering: There is c > 1 s.t.

$$\delta_{\ell} = \frac{(\log |S^{(\ell)}|)^{c}}{|S^{(\ell)}|} \implies \operatorname{Vol}\left(PU(2^{n}) - \bigcup_{s \in S^{(\ell)}} B(s, \delta_{\ell})\right) \xrightarrow{\ell} 0$$

- 2. Growth: $|S^{(\ell)}|$ grows exponentially in ℓ .
- 3. Navigation: given $s \in \langle S \rangle$, there is an efficient algorithm that writes it as a word in S of the shortest possible length .

Definition

A finite subset $S \subseteq PU(2^n)$ is a set of golden gates if:

1. Covering: There is c > 1 s.t.

$$\delta_{\ell} = \frac{(\log |S^{(\ell)}|)^{c}}{|S^{(\ell)}|} \implies \operatorname{Vol}\left(PU(2^{n}) - \bigcup_{s \in S^{(\ell)}} B(s, \delta_{\ell})\right) \xrightarrow{\ell} 0$$

- 2. Growth: $|S^{(\ell)}|$ grows exponentially in ℓ .
- 3. Navigation: given $s \in \langle S \rangle$, there is an efficient algorithm that writes it as a word in S of the shortest possible length .
- 4. Approximation: There is constant N such that there is a (randomized, heuristic) efficient algorithm inputting ℓ, δ, x such that there is $s \in S^{(\ell)}$ with $x \in B(s, \delta)$ and outputting $s' \in |S^{(\ell N)}|$ with $x \in B(s', \delta)$.

Definition

A finite subset $S \subseteq PU(2^n)$ is a set of golden gates if:

1. Covering: There is c > 1 s.t. (slightly weaker!)

$$\delta_{\ell} = \frac{(\log |S^{(\ell)}|)^{c}}{|S^{(\ell)}|} \implies \operatorname{Vol}\left(PU(2^{n}) - \bigcup_{s \in S^{(\ell)}} B(s, \delta_{\ell})\right) \xrightarrow{\ell} 0$$

- 2. Growth: $|S^{(\ell)}|$ grows exponentially in ℓ .
- 3. Navigation: given $s \in \langle S \rangle$, there is an efficient algorithm that writes it as a word in S of the shortest possible length .
- 4. Approximation: There is constant N such that there is a (randomized, heuristic) efficient algorithm inputting ℓ, δ, x such that there is $s \in S^{(\ell)}$ with $x \in B(s, \delta)$ and outputting $s' \in |S^{(\ell N)}|$ with $x \in B(s', \delta)$.

Theorem ([DEP24])

Theorem ([DEP24])

There are sets of golden gates on $PU(2^n)$ for n = 2, 3.

• $U(2^n)$ can be written as a product of smaller unitary groups \implies efficient gate sets for small n give less efficient gate sets for larger n

Theorem ([DEP24])

- $U(2^n)$ can be written as a product of smaller unitary groups \implies efficient gate sets for small n give less efficient gate sets for larger n
- For actual application: 2-qubit gates most important, but maybe other requirements for good physical constructions?
 - \implies future work: find all 2-qubit examples

Theorem ([DEP24])

- $U(2^n)$ can be written as a product of smaller unitary groups \implies efficient gate sets for small n give less efficient gate sets for larger n
- For actual application: 2-qubit gates most important, but maybe other requirements for good physical constructions?
 - \Longrightarrow future work: find all 2-qubit examples
- Previous work: only n = 1, U(3) [Sar15], [PS18], [EP22],
 - Key new difficulty: failures of Ramanujan Conjecture ⇒ automorphic bound drastically harder

Theorem ([DEP24])

- $U(2^n)$ can be written as a product of smaller unitary groups \implies efficient gate sets for small n give less efficient gate sets for larger n
- For actual application: 2-qubit gates most important, but maybe other requirements for good physical constructions?
 - \Longrightarrow future work: find all 2-qubit examples
- Previous work: only n = 1, U(3) [Sar15], [PS18], [EP22],
- n = 2: explicit matrices computed

Theorem ([DEP24])

- $U(2^n)$ can be written as a product of smaller unitary groups \implies efficient gate sets for small n give less efficient gate sets for larger n
- For actual application: 2-qubit gates most important, but maybe other requirements for good physical constructions?
 - \implies future work: find all 2-qubit examples
- Previous work: only n = 1, U(3) [Sar15], [PS18], [EP22],
- n = 2: explicit matrices computed
- n = 3: explicit matrices can be computed from [MSG12]

Summary of Construction

- Step 1: $\langle S \rangle$ is a dense subgroup of $PU(2^n)$ that has a nice Cayley graph \mathcal{B} with respect to generating set S.
 - Desired choice: $\mathcal{B}{\approx}$ the 1-skeleton of a Bruhat-Tits building
 - If possible: props. of BT buildings ⇒ growth, navigation

- Step 1: $\langle S \rangle$ is a dense subgroup of $PU(2^n)$ that has a nice Cayley graph \mathcal{B} with respect to generating set S.
 - Desired choice: $\mathcal{B}{\approx}$ the 1-skeleton of a Bruhat-Tits building
 - ullet If possible: props. of BT buildings \Longrightarrow growth, navigation
- Step 2: Key Idea: Such $\langle S \rangle$: from golden *p*-arithmetic subgroups of $U(2^n)$
 - Step 2 subpart: find examples of these!

- Step 1: $\langle S \rangle$ is a dense subgroup of $PU(2^n)$ that has a nice Cayley graph \mathcal{B} with respect to generating set S.
 - Desired choice: $\mathcal{B}{\approx}$ the 1-skeleton of a Bruhat-Tits building
 - ullet If possible: props. of BT buildings \Longrightarrow growth, navigation
- Step 2: Key Idea: Such $\langle S \rangle$: from golden *p*-arithmetic subgroups of $U(2^n)$
 - Step 2 subpart: find examples of these!
- Step 3: golden p-Arithmetic ⇒ covering rewritten as Sarnak-Xue type bound on counts of automorphic reps

- Step 1: $\langle S \rangle$ is a dense subgroup of $PU(2^n)$ that has a nice Cayley graph \mathcal{B} with respect to generating set S.
 - Desired choice: $\mathcal{B}{\approx}$ the 1-skeleton of a Bruhat-Tits building
 - ullet If possible: props. of BT buildings \Longrightarrow growth, navigation
- Step 2: Key Idea: Such $\langle S \rangle$: from golden *p*-arithmetic subgroups of $U(2^n)$
 - Step 2 subpart: find examples of these!
- Step 3: golden p-Arithmetic ⇒ covering rewritten as Sarnak-Xue type bound on counts of automorphic reps
- Step 4: Prove bound w/ endoscopic classification [KMSW14]

- Step 1: $\langle S \rangle$ is a dense subgroup of $PU(2^n)$ that has a nice Cayley graph \mathcal{B} with respect to generating set S.
 - Desired choice: $\mathcal{B}{\approx}$ the 1-skeleton of a Bruhat-Tits building
 - ullet If possible: props. of BT buildings \Longrightarrow growth, navigation
- Step 2: Key Idea: Such $\langle S \rangle$: from golden *p*-arithmetic subgroups of $U(2^n)$
 - Step 2 subpart: find examples of these!
- Step 3: golden p-Arithmetic ⇒ covering rewritten as Sarnak-Xue type bound on counts of automorphic reps
- Step 4: Prove bound w/ endoscopic classification [KMSW14]
- Step 5: approximation from orthogonal CS result [RS15]

- Step 1: $\langle S \rangle$ is a dense subgroup of $PU(2^n)$ that has a nice Cayley graph \mathcal{B} with respect to generating set S.
 - Desired choice: $\mathcal{B} \approx$ the 1-skeleton of a Bruhat-Tits building
 - ullet If possible: props. of BT buildings \Longrightarrow growth, navigation
- Step 2: Key Idea: Such $\langle S \rangle$: from golden *p*-arithmetic subgroups of $U(2^n)$
 - Step 2 subpart: find examples of these!
- Step 3: golden p-Arithmetic ⇒ covering rewritten as Sarnak-Xue type bound on counts of automorphic reps
- Step 4: Prove bound w/ endoscopic classification [KMSW14]
- Step 5: approximation from orthogonal CS result [RS15]

Rest of the talk: steps 1-4 in more detail

Goal: Construct good $\Gamma \subseteq U(2^n)$ generated by finite set $S \subseteq \Gamma$.

Goal: Construct good $\Gamma \subseteq U(2^n)$ generated by finite set $S \subseteq \Gamma$.

• Group + set of genrators \mapsto Cayley graph

Goal: Construct good $\Gamma \subseteq U(2^n)$ generated by finite set $S \subseteq \Gamma$.

- Group + set of genrators → Cayley graph
- Growth and Navigation from choosing group with good Cayley graph

Goal: Construct good $\Gamma \subseteq U(2^n)$ generated by finite set $S \subseteq \Gamma$.

- Group + set of genrators → Cayley graph
- Growth and Navigation from choosing group with good Cayley graph

Precise Goal: Find a dense subgroup $\Gamma \subseteq U(2^n)$ generated by finite set $S \mapsto$ Cayley graph satisfying:

Goal: Construct good $\Gamma \subseteq U(2^n)$ generated by finite set $S \subseteq \Gamma$.

- Group + set of genrators → Cayley graph
- Growth and Navigation from choosing group with good Cayley graph

Precise Goal: Find a dense subgroup $\Gamma \subseteq U(2^n)$ generated by finite set $S \mapsto$ Cayley graph satisfying:

• The number of vertices at distance ℓ from id grows exponentially in ℓ

Goal: Construct good $\Gamma \subseteq U(2^n)$ generated by finite set $S \subseteq \Gamma$.

- Group + set of genrators → Cayley graph
- Growth and Navigation from choosing group with good Cayley graph

Precise Goal: Find a dense subgroup $\Gamma \subseteq U(2^n)$ generated by finite set $S \mapsto$ Cayley graph satisfying:

- The number of vertices at distance ℓ from id grows exponentially in ℓ
- There is an easy way to find a path between any two vertices

Goal: Construct good $\Gamma \subseteq U(2^n)$ generated by finite set $S \subseteq \Gamma$.

- Group + set of genrators → Cayley graph
- Growth and Navigation from choosing group with good Cayley graph

Precise Goal: Find a dense subgroup $\Gamma \subseteq U(2^n)$ generated by finite set $S \mapsto$ Cayley graph satisfying:

- The number of vertices at distance ℓ from id grows exponentially in ℓ
- There is an easy way to find a path between any two vertices
 - sufficient: easy way to compute distance between vertices

Key Idea: Arithmetic Matrix Groups

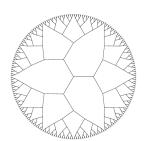
Our Γ : from *p*-arithmetic matrix groups:

Key Motivating Example: $\mathrm{SL}_2(\mathbb{Z}[1/p]) \subseteq \mathrm{SL}_2\mathbb{R}$ acts transitively on infinite (p+1)-regular tree

Key Idea: Arithmetic Matrix Groups

Our Γ : from *p*-arithmetic matrix groups:

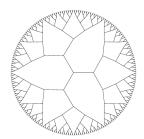
Key Motivating Example: $\mathrm{SL}_2(\mathbb{Z}[1/p]) \subseteq \mathrm{SL}_2\mathbb{R}$ acts transitively on infinite (p+1)-regular tree



Key Idea: Arithmetic Matrix Groups

Our Γ : from *p*-arithmetic matrix groups:

Key Motivating Example: $\mathrm{SL}_2(\mathbb{Z}[1/p]) \subseteq \mathrm{SL}_2\mathbb{R}$ acts transitively on infinite (p+1)-regular tree



Expander Graphs Idea: $\operatorname{SL}_2 \mapsto \operatorname{compact}$ gp. allows simple action

Goal: Generalize $\mathrm{SL}_2(\mathbb{Z}[1/p])$ to $U(2^n)$

• Idea: find algebraic matrix group G over $\mathbb{Z}[1/p]$ s.t. $G(\mathbb{R}) = U(2^n)$.

- Idea: find algebraic matrix group G over $\mathbb{Z}[1/p]$ s.t. $G(\mathbb{R}) = U(2^n)$.
- Choose: imaginary quadratic extension $E = \mathbb{Q}(\sqrt{-d})/\mathbb{Q}$.

- Idea: find algebraic matrix group G over $\mathbb{Z}[1/p]$ s.t. $G(\mathbb{R}) = U(2^n)$.
- Choose: imaginary quadratic extension $E = \mathbb{Q}(\sqrt{-d})/\mathbb{Q}$.
- Choose: positive-definite $2^n \times 2^n$ -Hermitian matrix H with entries in integers \mathcal{O}_E .
 - Same def. w/res to complex conjugation!
 - other possibility: involution of second kind on division algebra

- Idea: find algebraic matrix group G over $\mathbb{Z}[1/p]$ s.t. $G(\mathbb{R}) = U(2^n)$.
- Choose: imaginary quadratic extension $E = \mathbb{Q}(\sqrt{-d})/\mathbb{Q}$.
- Choose: positive-definite $2^n \times 2^n$ -Hermitian matrix H with entries in integers \mathcal{O}_E . $2^{n+1} \times 2^{n+1}$ integer matrix
 - Same def. w/res to complex conjugation!
 - other possibility: involution of second kind on division algebra

- Idea: find algebraic matrix group G over $\mathbb{Z}[1/p]$ s.t. $G(\mathbb{R}) = U(2^n)$.
- Choose: imaginary quadratic extension $E = \mathbb{Q}(\sqrt{-d})/\mathbb{Q}$.
- Choose: positive-definite $2^n \times 2^n$ -Hermitian matrix H with entries in integers \mathcal{O}_E . $2^{n+1} \times 2^{n+1}$ integer matrix
 - Same def. w/res to complex conjugation!
 - other possibility: involution of second kind on division algebra
- Define: $U^{E,H}$ as matrices g such that $gH\bar{g}^T=H$.
 - AG def: $U^{E,H}(R)$ is such matrices g with entries in $R \otimes_{\mathbb{Z}} \mathcal{O}_E$

- Idea: find algebraic matrix group G over $\mathbb{Z}[1/p]$ s.t. $G(\mathbb{R}) = U(2^n)$.
- Choose: imaginary quadratic extension $E = \mathbb{Q}(\sqrt{-d})/\mathbb{Q}$.
- Choose: positive-definite $2^n \times 2^n$ -Hermitian matrix H with entries in integers \mathcal{O}_E . $2^{n+1} \times 2^{n+1}$ integer matrix
 - Same def. w/res to complex conjugation!
 - other possibility: involution of second kind on division algebra
- Define: $U^{E,H}$ as matrices g such that $gH\bar{g}^T=H$.
 - AG def: $U^{E,H}(R)$ is such matrices g with entries in $R \otimes_{\mathbb{Z}} \mathcal{O}_E$
- Depends on choice of H and d

Goal: Generalize $\mathrm{SL}_2(\mathbb{Z}[1/p])$ to $U(2^n)$

- Idea: find algebraic matrix group G over $\mathbb{Z}[1/p]$ s.t. $G(\mathbb{R}) = U(2^n)$.
- Choose: imaginary quadratic extension $E = \mathbb{Q}(\sqrt{-d})/\mathbb{Q}$.
- Choose: positive-definite $2^n \times 2^n$ -Hermitian matrix H with entries in integers \mathcal{O}_E . $2^{n+1} \times 2^{n+1}$ integer matrix
 - Same def. w/res to complex conjugation!
 - other possibility: involution of second kind on division algebra
- Define: $U^{E,H}$ as matrices g such that $gH\bar{g}^T=H$.
 - AG def: $U^{E,H}(R)$ is such matrices g with entries in $R \otimes_{\mathbb{Z}} \mathcal{O}_E$
- Depends on choice of H and d

Upshot: $U^{E,H}(\mathbb{Z}[1/p])$ generalizes to matrices with entries in $\mathbb{Z}[\sqrt{-d},1/p]$ preserving H for p inert in \mathcal{O}_E , $-d\equiv 3\pmod 4$.

- Then: Γ acts on (a $U^{E,H}(\mathbb{Q}_p)$ orbit of) vertices of the Bruhat-Tits Building \mathcal{B} for $U^{E,H}(\mathbb{Q}_p)$.
 - Motivating Example: $\mathrm{SL}_2(\mathbb{Z}[1/p])$ on (p+1)-regular tree

- Then: Γ acts on (a $U^{E,H}(\mathbb{Q}_p)$ orbit of) vertices of the Bruhat-Tits Building \mathcal{B} for $U^{E,H}(\mathbb{Q}_p)$.
 - Motivating Example: $\mathrm{SL}_2(\mathbb{Z}[1/p])$ on (p+1)-regular tree
- In our case: Forget structure $\implies \mathcal{B}$ a graph w/ Γ action

- Then: Γ acts on (a $U^{E,H}(\mathbb{Q}_p)$ orbit of) vertices of the Bruhat-Tits Building \mathcal{B} for $U^{E,H}(\mathbb{Q}_p)$.
 - Motivating Example: $\mathrm{SL}_2(\mathbb{Z}[1/p])$ on (p+1)-regular tree
- In our case: Forget structure $\implies \mathcal{B}$ a graph w/ Γ action
- ℓ -ball volume is exponential in ℓ .

- Then: Γ acts on (a $U^{E,H}(\mathbb{Q}_p)$ orbit of) vertices of the Bruhat-Tits Building \mathcal{B} for $U^{E,H}(\mathbb{Q}_p)$.
 - Motivating Example: $\mathrm{SL}_2(\mathbb{Z}[1/p])$ on (p+1)-regular tree
- In our case: Forget structure $\implies \mathcal{B}$ a graph w/ Γ action
- ℓ -ball volume is exponential in ℓ .
- Distance in B: Cartan Decomposition
 - "p-adic singular value decomposition"

Idea: Γ is one of these $U^{E/H}(\mathbb{Z}[1/p])$.

- Then: Γ acts on (a $U^{E,H}(\mathbb{Q}_p)$ orbit of) vertices of the Bruhat-Tits Building \mathcal{B} for $U^{E,H}(\mathbb{Q}_p)$.
 - Motivating Example: $\mathrm{SL}_2(\mathbb{Z}[1/p])$ on (p+1)-regular tree
- In our case: Forget structure $\implies \mathcal{B}$ a graph w/ Γ action
- ℓ -ball volume is exponential in ℓ .
- Distance in B: Cartan Decomposition
 - "p-adic singular value decomposition"

Only Remaining Desiderata: Γ acts simply, transitively on \mathcal{B} .

Idea: Γ is one of these $U^{E/H}(\mathbb{Z}[1/p])$.

- Then: Γ acts on (a $U^{E,H}(\mathbb{Q}_p)$ orbit of) vertices of the Bruhat-Tits Building \mathcal{B} for $U^{E,H}(\mathbb{Q}_p)$.
 - Motivating Example: $\mathrm{SL}_2(\mathbb{Z}[1/p])$ on (p+1)-regular tree
- In our case: Forget structure $\implies \mathcal{B}$ a graph w/ Γ action
- ℓ -ball volume is exponential in ℓ .
- Distance in \mathcal{B} : Cartan Decomposition
 - "p-adic singular value decomposition"

Only Remaining Desiderata: Γ acts simply, transitively on \mathcal{B} .

• $\implies \mathcal{B}$ is the Cayley graph for Γ

Idea: Γ is one of these $U^{E/H}(\mathbb{Z}[1/p])$.

- Then: Γ acts on (a $U^{E,H}(\mathbb{Q}_p)$ orbit of) vertices of the Bruhat-Tits Building \mathcal{B} for $U^{E,H}(\mathbb{Q}_p)$.
 - Motivating Example: $\mathrm{SL}_2(\mathbb{Z}[1/p])$ on (p+1)-regular tree
- In our case: Forget structure $\implies \mathcal{B}$ a graph w/ Γ action
- ℓ -ball volume is exponential in ℓ .
- Distance in \mathcal{B} : Cartan Decomposition
 - "p-adic singular value decomposition"

Only Remaining Desiderata: Γ acts simply, transitively on \mathcal{B} .

- $\implies \mathcal{B}$ is the Cayley graph for Γ
- Gate set S: generators that take a point to its neighbors

Adelic Perspective

Arithmetic lattices are simpler from an adelic perspective:

Adelic Perspective

Arithmetic lattices are simpler from an adelic perspective:

• Recall: \mathbb{Q} has completions \mathbb{R} and \mathbb{Q}_p . \mathbb{A} is the restricted direct product, diagonal $\mathbb{Q} \hookrightarrow \mathbb{A}$ discrete and cocompact

Adelic Perspective

Arithmetic lattices are simpler from an adelic perspective:

- Recall: \mathbb{Q} has completions \mathbb{R} and \mathbb{Q}_p . \mathbb{A} is the restricted direct product, diagonal $\mathbb{Q} \hookrightarrow \mathbb{A}$ discrete and cocompact
- Define: $U^{E,H}(\mathbb{A})$, $U^{E,H}(\mathbb{Q})$, $U^{E,H}(\mathbb{Q}_p)$, $U^{E,H}(\mathbb{Z}_p)$.

Arithmetic lattices are simpler from an adelic perspective:

- Recall: \mathbb{Q} has completions \mathbb{R} and \mathbb{Q}_p . \mathbb{A} is the restricted direct product, diagonal $\mathbb{Q} \hookrightarrow \mathbb{A}$ discrete and cocompact
- Define: $U^{E,H}(\mathbb{A})$, $U^{E,H}(\mathbb{Q})$, $U^{E,H}(\mathbb{Q}_p)$, $U^{E,H}(\mathbb{Z}_p)$.
- Fact: $U^{E,H}(\mathbb{Q}) \hookrightarrow U^{E,H}(\mathbb{A})$ discrete and cocompact

Arithmetic lattices are simpler from an adelic perspective:

- Recall: \mathbb{Q} has completions \mathbb{R} and \mathbb{Q}_p . \mathbb{A} is the restricted direct product, diagonal $\mathbb{Q} \hookrightarrow \mathbb{A}$ discrete and cocompact
- Define: $U^{E,H}(\mathbb{A})$, $U^{E,H}(\mathbb{Q})$, $U^{E,H}(\mathbb{Q}_p)$, $U^{E,H}(\mathbb{Z}_p)$.
- Fact: $U^{E,H}(\mathbb{Q}) \hookrightarrow U^{E,H}(\mathbb{A})$ discrete and cocompact

Arithmetic lattices \leftarrow open compact subgroups $K^{\infty} \subseteq U^{E,H}(\mathbb{A}^{\infty})$

Arithmetic lattices are simpler from an adelic perspective:

- Recall: \mathbb{Q} has completions \mathbb{R} and \mathbb{Q}_p . \mathbb{A} is the restricted direct product, diagonal $\mathbb{Q} \hookrightarrow \mathbb{A}$ discrete and cocompact
- Define: $U^{E,H}(\mathbb{A})$, $U^{E,H}(\mathbb{Q})$, $U^{E,H}(\mathbb{Q}_p)$, $U^{E,H}(\mathbb{Z}_p)$.
- Fact: $U^{E,H}(\mathbb{Q}) \hookrightarrow U^{E,H}(\mathbb{A})$ discrete and cocompact

Arithmetic lattices \leftarrow open compact subgroups $K^{\infty} \subseteq U^{E,H}(\mathbb{A}^{\infty})$

• For each p: define p-arithmetic lattice $\Lambda_p := K^{\infty,p} \cap U^{E,H}(\mathbb{Q})$.

Arithmetic lattices are simpler from an adelic perspective:

- Recall: \mathbb{Q} has completions \mathbb{R} and \mathbb{Q}_p . \mathbb{A} is the restricted direct product, diagonal $\mathbb{Q} \hookrightarrow \mathbb{A}$ discrete and cocompact
- Define: $U^{E,H}(\mathbb{A})$, $U^{E,H}(\mathbb{Q})$, $U^{E,H}(\mathbb{Q}_p)$, $U^{E,H}(\mathbb{Z}_p)$.
- Fact: $U^{E,H}(\mathbb{Q}) \hookrightarrow U^{E,H}(\mathbb{A})$ discrete and cocompact

Arithmetic lattices \leftarrow open compact subgroups $K^{\infty} \subseteq U^{E,H}(\mathbb{A}^{\infty})$

- For each p: define p-arithmetic lattice $\Lambda_p := K^{\infty,p} \cap U^{E,H}(\mathbb{Q})$.
- Example: If $K^{\infty} = U^{E,H}(\widehat{\mathbb{Z}})$, then $\Lambda_p = U^{E,H}(\mathbb{Z}[1/p])$.

Arithmetic lattices are simpler from an adelic perspective:

- Recall: \mathbb{Q} has completions \mathbb{R} and \mathbb{Q}_p . \mathbb{A} is the restricted direct product, diagonal $\mathbb{Q} \hookrightarrow \mathbb{A}$ discrete and cocompact
- Define: $U^{E,H}(\mathbb{A})$, $U^{E,H}(\mathbb{Q})$, $U^{E,H}(\mathbb{Q}_p)$, $U^{E,H}(\mathbb{Z}_p)$.
- Fact: $U^{E,H}(\mathbb{Q}) \hookrightarrow U^{E,H}(\mathbb{A})$ discrete and cocompact

Arithmetic lattices \leftarrow open compact subgroups $K^{\infty} \subseteq U^{E,H}(\mathbb{A}^{\infty})$

- For each p: define p-arithmetic lattice $\Lambda_p := K^{\infty,p} \cap U^{E,H}(\mathbb{Q})$.
- Example: If $K^{\infty} = U^{E,H}(\widehat{\mathbb{Z}})$, then $\Lambda_p = U^{E,H}(\mathbb{Z}[1/p])$.

From definition of \mathcal{B} :

Arithmetic lattices are simpler from an adelic perspective:

- Recall: \mathbb{Q} has completions \mathbb{R} and \mathbb{Q}_p . \mathbb{A} is the restricted direct product, diagonal $\mathbb{Q} \hookrightarrow \mathbb{A}$ discrete and cocompact
- Define: $U^{E,H}(\mathbb{A})$, $U^{E,H}(\mathbb{Q})$, $U^{E,H}(\mathbb{Q}_p)$, $U^{E,H}(\mathbb{Z}_p)$.
- Fact: $U^{E,H}(\mathbb{Q}) \hookrightarrow U^{E,H}(\mathbb{A})$ discrete and cocompact

Arithmetic lattices \leftarrow open compact subgroups $K^{\infty} \subseteq U^{E,H}(\mathbb{A}^{\infty})$

- For each p: define p-arithmetic lattice $\Lambda_p := K^{\infty,p} \cap U^{E,H}(\mathbb{Q})$.
- Example: If $K^{\infty} = U^{E,H}(\widehat{\mathbb{Z}})$, then $\Lambda_p = U^{E,H}(\mathbb{Z}[1/p])$.

From definition of \mathcal{B} :

• If K_p is special: the vertices of \mathcal{B} are $\approx U^{E,H}(\mathbb{Q}_p)/K_p$.

Arithmetic lattices are simpler from an adelic perspective:

- Recall: \mathbb{Q} has completions \mathbb{R} and \mathbb{Q}_p . \mathbb{A} is the restricted direct product, diagonal $\mathbb{Q} \hookrightarrow \mathbb{A}$ discrete and cocompact
- Define: $U^{E,H}(\mathbb{A})$, $U^{E,H}(\mathbb{Q})$, $U^{E,H}(\mathbb{Q}_p)$, $U^{E,H}(\mathbb{Z}_p)$.
- Fact: $U^{E,H}(\mathbb{Q}) \hookrightarrow U^{E,H}(\mathbb{A})$ discrete and cocompact

Arithmetic lattices \leftarrow open compact subgroups $K^{\infty} \subseteq U^{E,H}(\mathbb{A}^{\infty})$

- For each p: define p-arithmetic lattice $\Lambda_p := K^{\infty,p} \cap U^{E,H}(\mathbb{Q})$.
- Example: If $K^{\infty} = U^{E,H}(\widehat{\mathbb{Z}})$, then $\Lambda_p = U^{E,H}(\mathbb{Z}[1/p])$.

From definition of \mathcal{B} :

- If K_p is special: the vertices of \mathcal{B} are $\approx U^{E,H}(\mathbb{Q}_p)/K_p$.
- Translated Dessiderata: Find K^{∞} and p so that Λ_p acts simply transitively on $U^{E,H}(\mathbb{Q}_p)/K_p$

Definition

A compact open $K^{\infty} \subseteq U^{E,H}(\mathbb{A}^{\infty})$ is golden if

- 1. $K^{\infty}U^{E,H}(\mathbb{Q}) = U^{E,H}(\mathbb{A}^{\infty}),$
- 2. $K^{\infty} \cap U^{E,H}(\mathbb{Q}) = 1$.

Definition

A compact open $K^{\infty} \subseteq U^{E,H}(\mathbb{A}^{\infty})$ is golden if

- 1. $K^{\infty}U^{E,H}(\mathbb{Q}) = U^{E,H}(\mathbb{A}^{\infty}),$
- 2. $K^{\infty} \cap U^{E,H}(\mathbb{Q}) = 1$.

Key Property: if K^{∞} is golden, then;

$$U^{E,H}(\mathbb{Q})\backslash U^{E,H}(\mathbb{A})/K^{\infty}$$

Definition

A compact open $K^{\infty} \subseteq U^{E,H}(\mathbb{A}^{\infty})$ is golden if

- 1. $K^{\infty}U^{E,H}(\mathbb{Q})=U^{E,H}(\mathbb{A}^{\infty}),$
- 2. $K^{\infty} \cap U^{E,H}(\mathbb{Q}) = 1$.

Key Property: if K^{∞} is golden, then;

$$U^{E,H}(\mathbb{Q})\setminus U^{E,H}(\mathbb{A})/K^{\infty}\stackrel{1}{=}U^{E,H}(\mathbb{R})/(K^{\infty}\cap U^{E,H}(\mathbb{Q}))$$

Definition

A compact open $K^{\infty} \subseteq U^{E,H}(\mathbb{A}^{\infty})$ is golden if

- 1. $K^{\infty}U^{E,H}(\mathbb{Q}) = U^{E,H}(\mathbb{A}^{\infty}),$
- 2. $K^{\infty} \cap U^{E,H}(\mathbb{Q}) = 1$.

Key Property: if K^{∞} is golden, then;

$$U^{E,H}(\mathbb{Q})\setminus U^{E,H}(\mathbb{A})/K^{\infty}\stackrel{1}{=}U^{E,H}(\mathbb{R})/(K^{\infty}\cap U^{E,H}(\mathbb{Q}))\stackrel{2}{=}U(2^n)$$

Definition

A compact open $K^{\infty} \subseteq U^{E,H}(\mathbb{A}^{\infty})$ is golden if

- 1. $K^{\infty}U^{E,H}(\mathbb{Q}) = U^{E,H}(\mathbb{A}^{\infty}),$
- 2. $K^{\infty} \cap U^{E,H}(\mathbb{Q}) = 1$.

Key Property: if K^{∞} is golden, then;

$$U^{E,H}(\mathbb{Q})\setminus U^{E,H}(\mathbb{A})/K^{\infty}\stackrel{1}{=}U^{E,H}(\mathbb{R})/(K^{\infty}\cap U^{E,H}(\mathbb{Q}))\stackrel{2}{=}U(2^n)$$

Variant: For all $p: \Lambda_p$ acts on $U^{E,H}(\mathbb{Q}_p)/K_p$

Definition

A compact open $K^{\infty} \subseteq U^{E,H}(\mathbb{A}^{\infty})$ is golden if

- 1. $K^{\infty}U^{E,H}(\mathbb{Q}) = U^{E,H}(\mathbb{A}^{\infty}),$
- 2. $K^{\infty} \cap U^{E,H}(\mathbb{Q}) = 1$.

Key Property: if K^{∞} is golden, then;

$$U^{E,H}(\mathbb{Q})\setminus U^{E,H}(\mathbb{A})/K^{\infty}\stackrel{1}{=}U^{E,H}(\mathbb{R})/(K^{\infty}\cap U^{E,H}(\mathbb{Q}))\stackrel{2}{=}U(2^n)$$

Variant: For all $p: \Lambda_p$ acts on $U^{E,H}(\mathbb{Q}_p)/K_p$ simply

Definition

A compact open $K^{\infty} \subseteq U^{E,H}(\mathbb{A}^{\infty})$ is golden if

- 1. $K^{\infty}U^{E,H}(\mathbb{Q})=U^{E,H}(\mathbb{A}^{\infty}),$
- 2. $K^{\infty} \cap U^{E,H}(\mathbb{Q}) = 1$.

Key Property: if K^{∞} is golden, then;

$$U^{E,H}(\mathbb{Q})\setminus U^{E,H}(\mathbb{A})/K^{\infty}\stackrel{1}{=}U^{E,H}(\mathbb{R})/(K^{\infty}\cap U^{E,H}(\mathbb{Q}))\stackrel{2}{=}U(2^n)$$

Variant: For all $p: \Lambda_p$ acts on $U^{E,H}(\mathbb{Q}_p)/K_p$ simply transitively

Definition

A compact open $K^{\infty} \subseteq U^{E,H}(\mathbb{A}^{\infty})$ is golden if

- 1. $K^{\infty}U^{E,H}(\mathbb{Q}) = U^{E,H}(\mathbb{A}^{\infty}),$
- 2. $K^{\infty} \cap U^{E,H}(\mathbb{Q}) = 1$.

Key Property: if K^{∞} is golden, then;

$$U^{E,H}(\mathbb{Q})\setminus U^{E,H}(\mathbb{A})/K^{\infty}\stackrel{1}{=}U^{E,H}(\mathbb{R})/(K^{\infty}\cap U^{E,H}(\mathbb{Q}))\stackrel{2}{=}U(2^n)$$

Variant: For all p: Λ_p acts on $U^{E,H}(\mathbb{Q}_p)/K_p$ simply transitively Key Limitation:

Definition

A compact open $K^{\infty} \subseteq U^{E,H}(\mathbb{A}^{\infty})$ is golden if

- 1. $K^{\infty}U^{E,H}(\mathbb{Q}) = U^{E,H}(\mathbb{A}^{\infty}),$
- 2. $K^{\infty} \cap U^{E,H}(\mathbb{Q}) = 1$.

Key Property: if K^{∞} is golden, then;

$$U^{E,H}(\mathbb{Q})\setminus U^{E,H}(\mathbb{A})/K^{\infty}\stackrel{1}{=}U^{E,H}(\mathbb{R})/(K^{\infty}\cap U^{E,H}(\mathbb{Q}))\stackrel{2}{=}U(2^n)$$

Variant: For all $p: \Lambda_p$ acts on $U^{E,H}(\mathbb{Q}_p)/K_p$ simply transitively

Key Limitation: 1 is rarely satisfied ([MSG12]: finitely many examples with rank > 4, none with rank > 8)

• future work: find all examples with rank 4

 $\mathbf{1}_{\mathcal{B}_{\delta}}$: pullback of ind. function ball of volume δ at $1 \subseteq PU(2^n)$.

 $\mathbf{1}_{\mathcal{B}_{\delta}}$: pullback of ind. function ball of volume δ at $1 \subseteq PU(2^n)$.

• If $S^{(\ell)}$ covers $PU(2^n)$ efficiently \leftrightarrow it is evenly distributed

 $\mathbf{1}_{\mathcal{B}_{\delta}}$: pullback of ind. function ball of volume δ at $1 \subseteq PU(2^n)$.

- If $S^{(\ell)}$ covers $PU(2^n)$ efficiently \leftrightarrow it is evenly distributed
- \implies this should be close to the identity function **1** on $U(2^n)$:

$$\mathbf{1}_{S^{(\ell)}} \star \mathbf{1}_{B_{\delta}} := |S^{(\ell)}|^{-1} \sum_{s \in S^{(\ell)}} \mathbf{1}_{B_{\delta}}(s^{-1}(*))$$

 $\mathbf{1}_{B_{\delta}}$: pullback of ind. function ball of volume δ at $1 \subseteq PU(2^n)$.

- If $S^{(\ell)}$ covers $PU(2^n)$ efficiently \leftrightarrow it is evenly distributed
- \implies this should be close to the identity function **1** on $U(2^n)$:

$$\mathbf{1}_{S^{(\ell)}} \star \mathbf{1}_{B_{\delta}} := |S^{(\ell)}|^{-1} \sum_{s \in S^{(\ell)}} \mathbf{1}_{B_{\delta}}(s^{-1}(*))$$

Making this precise:

$$\begin{split} \|\operatorname{Proj}_{\mathbf{1}^{\perp}}(\mathbf{1}_{\mathcal{S}^{(\ell)}}\star\mathbf{1}_{B_{\delta}})\|_{2}^{2} &= \|\mathbf{1}_{\mathcal{S}^{(\ell)}}\star\mathbf{1}_{B_{\delta}} - \delta\mathbf{1}\|_{2}^{2} \\ &\geq \delta^{2}\operatorname{Vol}\left(U(2^{n}) - \bigcup_{s \in \mathcal{S}^{(\ell)}}B(s,\delta)\right) \end{split}$$

 $\mathbf{1}_{B_{\delta}}$: pullback of ind. function ball of volume δ at $1 \subseteq PU(2^n)$.

- If $S^{(\ell)}$ covers $PU(2^n)$ efficiently \leftrightarrow it is evenly distributed
- \implies this should be close to the identity function **1** on $U(2^n)$:

$$\mathbf{1}_{S^{(\ell)}} \star \mathbf{1}_{B_{\delta}} := |S^{(\ell)}|^{-1} \sum_{s \in S^{(\ell)}} \mathbf{1}_{B_{\delta}}(s^{-1}(*))$$

Making this precise:

$$\begin{split} \|\operatorname{Proj}_{\mathbf{1}^{\perp}}(\mathbf{1}_{\mathcal{S}^{(\ell)}}\star\mathbf{1}_{B_{\delta}})\|_{2}^{2} &= \|\mathbf{1}_{\mathcal{S}^{(\ell)}}\star\mathbf{1}_{B_{\delta}} - \delta\mathbf{1}\|_{2}^{2} \\ &\geq \delta^{2}\operatorname{Vol}\left(U(2^{n}) - \bigcup_{s \in \mathcal{S}^{(\ell)}}B(s,\delta)\right) \end{split}$$

 \implies Goal: Upper bound $\|\mathbf{1}_{S(\ell)} \star \mathbf{1}_{B_{\delta}}\|_{2}^{2}$

First Step: Understand operator $\mathbf{1}_{S^{(\ell)}}\star$

First Step: Understand operator $\mathbf{1}_{S^{(\ell)}}\star$

Definition

An automorphic representation on $U^{E,H}$ is an irreducible subrep. of $L^2(U^{E,H}(\mathbb{Q})\setminus U^{E,H}(\mathbb{A}))$ under right translation by $U^{E,H}(\mathbb{A})$.

First Step: Understand operator $\mathbf{1}_{S^{(\ell)}}\star$

Definition

An automorphic representation on $U^{E,H}$ is an irreducible subrep. of $L^2(U^{E,H}(\mathbb{Q})\setminus U^{E,H}(\mathbb{A}))$ under right translation by $U^{E,H}(\mathbb{A})$.

• Fact: $G(\mathbb{R})$ compact $\implies L^2$ decomposes as a \oplus of irreps.

$$L^{2}(U^{E,H}(\mathbb{Q})\backslash U^{E,H}(\mathbb{A})) = \bigoplus_{\pi \in \mathcal{AR}(U^{E,H})} \pi$$

First Step: Understand operator $\mathbf{1}_{S^{(\ell)}}\star$

Definition

An automorphic representation on $U^{E,H}$ is an irreducible subrep. of $L^2(U^{E,H}(\mathbb{Q})\setminus U^{E,H}(\mathbb{A}))$ under right translation by $U^{E,H}(\mathbb{A})$.

• Fact: $G(\mathbb{R})$ compact $\implies L^2$ decomposes as a \oplus of irreps.

$$L^{2}(U^{E,H}(\mathbb{Q})\backslash U^{E,H}(\mathbb{A})) = \bigoplus_{\pi \in \mathcal{AR}(U^{E,H})} \pi$$

• Recall: if K^{∞} is golden

$$L^{2}(U(2^{n})) = L^{2}(U^{E,H}(\mathbb{Q}) \backslash U^{E,H}(\mathbb{A}))^{K^{\infty}} = \bigoplus_{\pi \in \mathcal{AR}(U^{E,H})} \pi^{K^{\infty}}$$

First Step: Understand operator $\mathbf{1}_{S^{(\ell)}}\star$

Definition

An automorphic representation on $U^{E,H}$ is an irreducible subrep. of $L^2(U^{E,H}(\mathbb{Q})\setminus U^{E,H}(\mathbb{A}))$ under right translation by $U^{E,H}(\mathbb{A})$.

• Fact: $G(\mathbb{R})$ compact $\implies L^2$ decomposes as a \oplus of irreps.

$$L^{2}(U^{E,H}(\mathbb{Q})\backslash U^{E,H}(\mathbb{A})) = \bigoplus_{\pi \in \mathcal{AR}(U^{E,H})} \pi$$

• Recall: if K^{∞} is golden

$$L^{2}(U(2^{n})) = L^{2}(U^{E,H}(\mathbb{Q}) \setminus U^{E,H}(\mathbb{A}))^{K^{\infty}} = \bigoplus_{\pi \in \mathcal{AR}(U^{E,H})} \pi^{K^{\infty}}$$

• Output: " $U^{E,H}(\mathbb{A}^{\infty})$ "-action on $L^2(U(2^n))$ understandable through information about the set $\mathcal{AR}(U^{E,H})$.

First Step Strategy: Realize $\mathbf{1}_{S(\ell)}\star$ operator in this extra "action"

First Step Strategy: Realize $\mathbf{1}_{S^{(\ell)}}$ * operator in this extra "action"

• nice function f on $U^{E,H}(\mathbb{A}^{\infty}) \mapsto$ covolution operator on reps:

$$f: \pi \to \pi: f \star v = \int_{U^{E,H}(\mathbb{A}^{\infty})} f(g)g \cdot v \, dg$$

First Step Strategy: Realize $\mathbf{1}_{S^{(\ell)}}\star$ operator in this extra "action"

• nice function f on $U^{E,H}(\mathbb{A}^{\infty}) \mapsto$ covolution operator on reps:

$$f: \pi \to \pi: f \star v = \int_{U^{E,H}(\mathbb{A}^{\infty})} f(g)g \cdot v \, dg$$

• K^{∞} compact open $\implies \mathbf{1}_{K^{\infty}gK^{\infty}}$ acts on $\pi^{K^{\infty}}$.

First Step Strategy: Realize $\mathbf{1}_{S^{(\ell)}}\star$ operator in this extra "action"

• nice function f on $U^{E,H}(\mathbb{A}^{\infty}) \mapsto$ covolution operator on reps:

$$f: \pi \to \pi: f \star v = \int_{U^{E,H}(\mathbb{A}^{\infty})} f(g)g \cdot v \, dg$$

• K^{∞} compact open $\implies \mathbf{1}_{K^{\infty}gK^{\infty}}$ acts on $\pi^{K^{\infty}}$.

Next: embed $S^{(\ell)} \hookrightarrow U^{E,H}(\mathbb{Q}_p) \hookrightarrow U^{E,H}(\mathbb{A}^{\infty})$:

First Step Strategy: Realize $\mathbf{1}_{S^{(\ell)}}\star$ operator in this extra "action"

• nice function f on $U^{E,H}(\mathbb{A}^{\infty}) \mapsto$ covolution operator on reps:

$$f: \pi \to \pi: f \star v = \int_{U^{E,H}(\mathbb{A}^{\infty})} f(g)g \cdot v \, dg$$

• K^{∞} compact open $\implies \mathbf{1}_{K^{\infty}gK^{\infty}}$ acts on $\pi^{K^{\infty}}$.

Next: embed $S^{(\ell)} \hookrightarrow U^{E,H}(\mathbb{Q}_p) \hookrightarrow U^{E,H}(\mathbb{A}^{\infty})$:

• K^{∞} golden $\implies \mathbf{1}_{K^{\infty}S^{(\ell)}K^{\infty}}$ acts on $L^2(U(2^n))$.

First Step Strategy: Realize $\mathbf{1}_{S^{(\ell)}}\star$ operator in this extra "action"

• nice function f on $U^{E,H}(\mathbb{A}^{\infty}) \mapsto$ covolution operator on reps:

$$f:\pi o \pi:f\star v=\int_{U^{E,H}(\mathbb{A}^\infty)}f(g)g\cdot v\,dg$$

• K^{∞} compact open $\implies \mathbf{1}_{K^{\infty}gK^{\infty}}$ acts on $\pi^{K^{\infty}}$.

Next: embed $S^{(\ell)} \hookrightarrow U^{E,H}(\mathbb{Q}_p) \hookrightarrow U^{E,H}(\mathbb{A}^{\infty})$:

- K^{∞} golden $\implies \mathbf{1}_{K^{\infty}S^{(\ell)}K^{\infty}}$ acts on $L^2(U(2^n))$.
- Recall: $S^{(\ell)}K_p$ is all v at dist. ℓ from v_0

$$\implies K_{p}S^{(\ell)}K_{p} = S^{(\ell)}K_{p} \implies K^{\infty}S^{(\ell)}K^{\infty} = S^{(\ell)}K^{\infty}$$

First Step Strategy: Realize $\mathbf{1}_{S^{(\ell)}}\star$ operator in this extra "action"

• nice function f on $U^{E,H}(\mathbb{A}^{\infty}) \mapsto$ covolution operator on reps:

$$f:\pi o \pi:f\star v=\int_{U^{E,H}(\mathbb{A}^\infty)}f(g)g\cdot v\,dg$$

• K^{∞} compact open $\implies \mathbf{1}_{K^{\infty}gK^{\infty}}$ acts on $\pi^{K^{\infty}}$.

Next: embed $S^{(\ell)} \hookrightarrow U^{E,H}(\mathbb{Q}_p) \hookrightarrow U^{E,H}(\mathbb{A}^{\infty})$:

- K^{∞} golden $\implies \mathbf{1}_{K^{\infty}S^{(\ell)}K^{\infty}}$ acts on $L^2(U(2^n))$.
- Recall: $S^{(\ell)}K_p$ is all v at dist. ℓ from v_0

$$\implies K_p S^{(\ell)} K_p = S^{(\ell)} K_p \implies K^{\infty} S^{(\ell)} K^{\infty} = S^{(\ell)} K^{\infty}$$

 \implies whenever $f \in \pi^{K^{\infty}}$, $\mathbf{1}_{K^{\infty}S(\ell)K^{\infty}} \star f = \mathbf{1}_{S(\ell)} \star f$

p-Matrix Coefficient Decay

Updated Goal: Control $\|\mathbf{1}_{S^{(\ell)}} \star \mathbf{1}_{B_{\delta}}\|_2^2$ by bounding projections of $\mathbf{1}_{B_{\delta}}$ onto $\pi \in \mathcal{AR}(U^{E,H})$ where $\mathbf{1}_{S^{(\ell)}} \star$ acts with large eigenvalues.

p-Matrix Coefficient Decay

Updated Goal: Control $\|\mathbf{1}_{S^{(\ell)}} \star \mathbf{1}_{B_{\delta}}\|_2^2$ by bounding projections of $\mathbf{1}_{B_{\delta}}$ onto $\pi \in \mathcal{AR}(U^{E,H})$ where $\mathbf{1}_{S^{(\ell)}} \star$ acts with large eigenvalues.

Define: $\sigma(\pi, p) := \inf\{q > 2 : \pi^{K^{\infty}} \text{ has } p\text{-matrix coeffs. in } L^q\}$

p-Matrix Coefficient Decay

Updated Goal: Control $\|\mathbf{1}_{S^{(\ell)}} \star \mathbf{1}_{B_{\delta}}\|_2^2$ by bounding projections of $\mathbf{1}_{B_{\delta}}$ onto $\pi \in \mathcal{AR}(U^{E,H})$ where $\mathbf{1}_{S^{(\ell)}} \star$ acts with large eigenvalues.

Define: $\sigma(\pi, p) := \inf\{q > 2 : \pi^{K^{\infty}} \text{ has } p\text{-matrix coeffs. in } L^q\}$

• p-matrix coefficients: ways to embed $\pi^{K^{\infty}}$ into functions on $U^{E,H}(\mathbb{Q}_p)/K_p \approx \mathcal{B}$ consistently w/ Hecke-action

Updated Goal: Control $\|\mathbf{1}_{S^{(\ell)}}\star\mathbf{1}_{B_\delta}\|_2^2$ by bounding projections of $\mathbf{1}_{B_\delta}$ onto $\pi\in\mathcal{AR}(U^{E,H})$ where $\mathbf{1}_{S^{(\ell)}}\star$ acts with large eigenvalues.

Define: $\sigma(\pi, p) := \inf\{q > 2 : \pi^{K^{\infty}} \text{ has } p\text{-matrix coeffs. in } L^q\}$

- p-matrix coefficients: ways to embed $\pi^{K^{\infty}}$ into functions on $U^{E,H}(\mathbb{Q}_p)/K_p \approx \mathcal{B}$ consistently w/ Hecke-action
- Ramanujan Conjecture: $\sigma(\pi, p) = 2$ always,

Updated Goal: Control $\|\mathbf{1}_{S^{(\ell)}} \star \mathbf{1}_{B_{\delta}}\|_2^2$ by bounding projections of $\mathbf{1}_{B_{\delta}}$ onto $\pi \in \mathcal{AR}(U^{E,H})$ where $\mathbf{1}_{S^{(\ell)}} \star$ acts with large eigenvalues.

Define: $\sigma(\pi, p) := \inf\{q > 2 : \pi^{K^{\infty}} \text{ has } p\text{-matrix coeffs. in } L^q\}$

- p-matrix coefficients: ways to embed $\pi^{K^{\infty}}$ into functions on $U^{E,H}(\mathbb{Q}_p)/K_p \approx \mathcal{B}$ consistently w/ Hecke-action
- Ramanujan Conjecture: $\sigma(\pi, p) = 2$ always, False in general!

Updated Goal: Control $\|\mathbf{1}_{S^{(\ell)}} \star \mathbf{1}_{B_{\delta}}\|_2^2$ by bounding projections of $\mathbf{1}_{B_{\delta}}$ onto $\pi \in \mathcal{AR}(U^{E,H})$ where $\mathbf{1}_{S^{(\ell)}} \star$ acts with large eigenvalues.

Define: $\sigma(\pi, p) := \inf\{q > 2 : \pi^{K^{\infty}} \text{ has } p\text{-matrix coeffs. in } L^q\}$

- p-matrix coefficients: ways to embed $\pi^{K^{\infty}}$ into functions on $U^{E,H}(\mathbb{Q}_p)/K_p \approx \mathcal{B}$ consistently w/ Hecke-action
- Ramanujan Conjecture: $\sigma(\pi, p) = 2$ always, False in general!

Theorem ([Kam16])

For all $\epsilon > 0$:

$$\|\mathbf{1}_{S^{(\ell)}}\star|_{\pi}\|_{\mathrm{op}}\ll_{\epsilon}|S^{(\ell)}|^{(1+\epsilon)\left(1-\frac{1}{\sigma(\pi,\rho)}\right)}$$

Updated Goal: Control $\|\mathbf{1}_{S^{(\ell)}}\star\mathbf{1}_{B_{\delta}}\|_2^2$ by bounding projections of $\mathbf{1}_{B_{\delta}}$ onto $\pi\in\mathcal{AR}(U^{E,H})$ where $\mathbf{1}_{S^{(\ell)}}\star$ acts with large eigenvalues.

Define: $\sigma(\pi, p) := \inf\{q > 2 : \pi^{K^{\infty}} \text{ has } p\text{-matrix coeffs. in } L^q\}$

- p-matrix coefficients: ways to embed $\pi^{K^{\infty}}$ into functions on $U^{E,H}(\mathbb{Q}_p)/K_p \approx \mathcal{B}$ consistently w/ Hecke-action
- Ramanujan Conjecture: $\sigma(\pi, p) = 2$ always, False in general!

Theorem ([Kam16])

For all $\epsilon > 0$:

$$\|\mathbf{1}_{S^{(\ell)}} \star |_{\pi}\|_{\mathrm{op}} \ll_{\epsilon} |S^{(\ell)}|^{(1+\epsilon)\left(1-\frac{1}{\sigma(\pi,\rho)}\right)}$$

A Sarnak-Xue-Type Bound

Final Goal: Control $\|\mathbf{1}_{S^{(\ell)}} \star \mathbf{1}_{B_{\delta}}\|_2^2$ by bounding projections of $\mathbf{1}_{B_{\delta}}$ onto $\pi \in \mathcal{AR}(U^{E,H})$ with large $\sigma(\pi, p)$.

A Sarnak-Xue-Type Bound

Final Goal: Control $\|\mathbf{1}_{S^{(\ell)}} \star \mathbf{1}_{B_{\delta}}\|_2^2$ by bounding projections of $\mathbf{1}_{B_{\delta}}$ onto $\pi \in \mathcal{AR}(U^{E,H})$ with large $\sigma(\pi, p)$.

Theorem ([DEP24])

For $\pi \in \mathcal{AR}(U^{E,H})$, define

$$a(\delta,\pi) := rac{\|\operatorname{Proj}_{\pi} \mathbf{1}_{\widetilde{B}_{\delta}}\|_{2}^{2}}{\|\mathbf{1}_{\widetilde{B}_{\delta}}\|_{2}^{2}}.$$

Then, for all $\epsilon > 0$,

$$\sum_{\pi:\sigma(\pi,p)>\sigma_0} a(\delta,\pi) \ll_{\epsilon} \delta^{(1-\epsilon)\left(1-\frac{2}{\sigma_0}\right)}.$$

A Sarnak-Xue-Type Bound

Final Goal: Control $\|\mathbf{1}_{S^{(\ell)}} \star \mathbf{1}_{B_{\delta}}\|_2^2$ by bounding projections of $\mathbf{1}_{B_{\delta}}$ onto $\pi \in \mathcal{AR}(U^{E,H})$ with large $\sigma(\pi, p)$.

Theorem ([DEP24])

For $\pi \in \mathcal{AR}(U^{E,H})$, define

$$a(\delta,\pi) := \frac{\|\operatorname{Proj}_{\pi} \mathbf{1}_{\widetilde{B}_{\delta}}\|_{2}^{2}}{\|\mathbf{1}_{\widetilde{B}_{\delta}}\|_{2}^{2}}.$$

Then, for all $\epsilon > 0$,

$$\sum_{\pi:\sigma(\pi,p)>\sigma_0} \mathsf{a}(\delta,\pi) \ll_{\epsilon} \delta^{(1-\epsilon)\left(1-\frac{2}{\sigma_0}\right)}.$$

Interpretation: most of $\mathbf{1}_{\widetilde{B}_s}$ avoids violations of Ramanujan

How to prove bound? First,

How to prove bound? First, Deep input from Aut. Rep. theory

• [KMSW14]: $\pi \in \mathcal{AR}(U^{E,H}) \mapsto \text{Arthur-SL}_2: \operatorname{SL}_2 \to \operatorname{GL}_{2^n}/\mathbb{C}$

- [KMSW14]: $\pi \in \mathcal{AR}(U^{E,H}) \mapsto \text{Arthur-SL}_2: \operatorname{SL}_2 \to \operatorname{GL}_{2^n}/\mathbb{C}$
 - Invariant determining much useful info about π

- [KMSW14]: $\pi \in \mathcal{AR}(U^{E,H}) \mapsto \text{Arthur-SL}_2: \operatorname{SL}_2 \to \operatorname{GL}_{2^n}/\mathbb{C}$
 - Invariant determining much useful info about π
 - Requires: Arthur's trace formula, Ngo's proof the fundamental lemma, stabilization of the trace formula, Moeglin and Waldspurger's work on twisted versions, relations between Aubert involutions and intertwining operators, etc.

- [KMSW14]: $\pi \in \mathcal{AR}(U^{E,H}) \mapsto \text{Arthur-SL}_2: \operatorname{SL}_2 \to \operatorname{GL}_{2^n}/\mathbb{C}$
 - Invariant determining much useful info about π
 - Requires: Arthur's trace formula, Ngo's proof the fundamental lemma, stabilization of the trace formula, Moeglin and Waldspurger's work on twisted versions, relations between Aubert involutions and intertwining operators, etc.
- +[Shi11, Car12, Clo13]: triv. A.-SL₂ $\Longrightarrow \sigma(\pi, p) = 2 \forall p$

- [KMSW14]: $\pi \in \mathcal{AR}(U^{E,H}) \mapsto \text{Arthur-SL}_2: \operatorname{SL}_2 \to \operatorname{GL}_{2^n}/\mathbb{C}$
 - Invariant determining much useful info about π
 - Requires: Arthur's trace formula, Ngo's proof the fundamental lemma, stabilization of the trace formula, Moeglin and Waldspurger's work on twisted versions, relations between Aubert involutions and intertwining operators, etc.
- +[Shi11, Car12, Clo13]: triv. A.-SL₂ $\Longrightarrow \sigma(\pi, p) = 2 \forall p$
 - Intuitively: Ramanujan conjecture for $U^{E,H}$

- [KMSW14]: $\pi \in \mathcal{AR}(U^{E,H}) \mapsto \text{Arthur-SL}_2: \operatorname{SL}_2 \to \operatorname{GL}_{2^n}/\mathbb{C}$
 - ullet Invariant determining much useful info about π
 - Requires: Arthur's trace formula, Ngo's proof the fundamental lemma, stabilization of the trace formula, Moeglin and Waldspurger's work on twisted versions, relations between Aubert involutions and intertwining operators, etc.
- +[Shi11, Car12, Clo13]: triv. A.-SL₂ $\Longrightarrow \sigma(\pi, p) = 2 \forall p$
 - Intuitively: Ramanujan conjecture for $U^{E,H}$
 - Requires: +theory of Shimura Varieties and their integral models, Weil conjectures, etc.

- [KMSW14]: $\pi \in \mathcal{AR}(U^{E,H}) \mapsto \text{Arthur-SL}_2: \operatorname{SL}_2 \to \operatorname{GL}_{2^n}/\mathbb{C}$
 - Invariant determining much useful info about π
 - Requires: Arthur's trace formula, Ngo's proof the fundamental lemma, stabilization of the trace formula, Moeglin and Waldspurger's work on twisted versions, relations between Aubert involutions and intertwining operators, etc.
- +[Shi11, Car12, Clo13]: triv. A.-SL₂ \Longrightarrow $\sigma(\pi, p) = 2 \forall p$
 - Intuitively: Ramanujan conjecture for $U^{E,H}$
 - Requires: +theory of Shimura Varieties and their integral models, Weil conjectures, etc.
- +[Mœg09]: Bound on $\sigma(\pi, p)$ in terms of Arthur-SL₂.

- [KMSW14]: $\pi \in \mathcal{AR}(U^{E,H}) \mapsto \text{Arthur-SL}_2: \operatorname{SL}_2 \to \operatorname{GL}_{2^n}/\mathbb{C}$
 - Invariant determining much useful info about π
 - Requires: Arthur's trace formula, Ngo's proof the fundamental lemma, stabilization of the trace formula, Moeglin and Waldspurger's work on twisted versions, relations between Aubert involutions and intertwining operators, etc.
- +[Shi11, Car12, Clo13]: triv. A.-SL₂ \Longrightarrow $\sigma(\pi, p) = 2 \forall p$
 - Intuitively: Ramanujan conjecture for $U^{E,H}$
 - Requires: +theory of Shimura Varieties and their integral models, Weil conjectures, etc.
- +[Mœg09]: Bound on $\sigma(\pi, p)$ in terms of Arthur-SL₂.
 - Requires: classifications of *p*-adic reps of GL_n/c classical groups.

How to prove bound? First, Deep input from Aut. Rep. theory

- [KMSW14]: $\pi \in \mathcal{AR}(U^{E,H}) \mapsto \text{Arthur-SL}_2: \operatorname{SL}_2 \to \operatorname{GL}_{2^n}/\mathbb{C}$
 - ullet Invariant determining much useful info about π
 - Requires: Arthur's trace formula, Ngo's proof the fundamental lemma, stabilization of the trace formula, Moeglin and Waldspurger's work on twisted versions, relations between Aubert involutions and intertwining operators, etc.
- +[Shi11, Car12, Clo13]: triv. A.-SL₂ \Longrightarrow $\sigma(\pi, p) = 2 \forall p$
 - Intuitively: Ramanujan conjecture for $U^{E,H}$
 - Requires: +theory of Shimura Varieties and their integral models, Weil conjectures, etc.
- +[Mœg09]: Bound on $\sigma(\pi, p)$ in terms of Arthur-SL₂.
 - Requires: classifications of p-adic reps of GL_n/c lassical groups.

Upshot: rewrite bound in terms of Arthur-SL₂ instead of $\sigma(\pi, p)$.

Next, understand $a(\delta, \pi)$

Next, understand $a(\delta, \pi)$

Compute:

$$\begin{split} \mathsf{a}(\delta,\pi) &= \|\operatorname{Proj}_{\pi_\infty} \mathbf{1}_{B_\delta}\|_2^2 \operatorname{\mathsf{dim}}((\pi^\infty)^{K^\infty}) \\ &= \operatorname{\mathsf{tr}}_{\pi_\infty}(\mathbf{1}_{B_\delta} \star \mathbf{1}_{B_\delta}) \operatorname{\mathsf{dim}}((\pi^\infty)^{K^\infty}) \end{split}$$

Next, understand $a(\delta, \pi)$

Compute:

$$\begin{aligned} a(\delta,\pi) &= \|\operatorname{Proj}_{\pi_{\infty}} \mathbf{1}_{B_{\delta}}\|_{2}^{2} \operatorname{dim}((\pi^{\infty})^{K^{\infty}}) \\ &= \operatorname{tr}_{\pi_{\infty}}(\mathbf{1}_{B_{\delta}} \star \mathbf{1}_{B_{\delta}}) \operatorname{dim}((\pi^{\infty})^{K^{\infty}}) \end{aligned}$$

• $U(2^n)$ compact $\implies \pi_{\infty}$ is some finite dimensional $\pi_{\lambda_{\infty}}$ with highest weight λ_{∞} .

Next, understand $a(\delta, \pi)$

Compute:

$$\begin{aligned} a(\delta,\pi) &= \|\operatorname{Proj}_{\pi_{\infty}} \mathbf{1}_{B_{\delta}}\|_{2}^{2} \operatorname{dim}((\pi^{\infty})^{K^{\infty}}) \\ &= \operatorname{tr}_{\pi_{\infty}}(\mathbf{1}_{B_{\delta}} \star \mathbf{1}_{B_{\delta}}) \operatorname{dim}((\pi^{\infty})^{K^{\infty}}) \end{aligned}$$

- $U(2^n)$ compact $\implies \pi_{\infty}$ is some finite dimensional $\pi_{\lambda_{\infty}}$ with highest weight λ_{∞} .
- Kirillov's orbit-method character formula explicitly computes

$$a(\lambda_{\infty}, \delta) := \operatorname{tr}_{\pi_{\lambda_{\infty}}}(\mathbf{1}_{\widetilde{B}_s} \star \mathbf{1}_{\widetilde{B}_s})$$

Next, understand $a(\delta, \pi)$

Compute:

$$\begin{aligned} a(\delta,\pi) &= \|\operatorname{Proj}_{\pi_{\infty}} \mathbf{1}_{B_{\delta}}\|_{2}^{2} \operatorname{dim}((\pi^{\infty})^{K^{\infty}}) \\ &= \operatorname{tr}_{\pi_{\infty}}(\mathbf{1}_{B_{\delta}} \star \mathbf{1}_{B_{\delta}}) \operatorname{dim}((\pi^{\infty})^{K^{\infty}}) \end{aligned}$$

- $U(2^n)$ compact $\implies \pi_{\infty}$ is some finite dimensional $\pi_{\lambda_{\infty}}$ with highest weight λ_{∞} .
- Kirillov's orbit-method character formula explicitly computes

$$a(\lambda_{\infty}, \delta) := \operatorname{tr}_{\pi_{\lambda_{\infty}}}(\mathbf{1}_{\widetilde{B}_{\delta}} \star \mathbf{1}_{\widetilde{B}_{\delta}})$$

• $\mathbf{1}_{\widetilde{B}_{\delta}}$: slight modification of $\mathbf{1}_{B_{\delta}}$ for computational simplicity

Goal: \square : subset of $\mathcal{AR}(U^{E,H})$ w/ some fixed Arthur-SL₂. Bound:

$$\sum_{\pi \in \square} \mathsf{a}(\pi, \delta) =$$

Goal: \square : subset of $\mathcal{AR}(U^{E,H})$ w/ some fixed Arthur-SL₂. Bound:

$$\sum_{\pi \in \square} \mathsf{a}(\pi, \delta) = \sum_{\lambda_{\infty}} \mathsf{a}(\lambda_{\infty}, \delta) \sum_{\substack{\pi \in \square \\ \pi_{\infty} = \pi_{\lambda_{\infty}}}} \dim((\pi^{\infty})^{K^{\infty}})$$

Goal: \square : subset of $\mathcal{AR}(U^{E,H})$ w/ some fixed Arthur-SL₂. Bound:

$$\sum_{\pi \in \square} \mathsf{a}(\pi, \delta) = \sum_{\lambda_{\infty}} \mathsf{a}(\lambda_{\infty}, \delta) \sum_{\substack{\pi \in \square \\ \pi_{\infty} = \pi_{\lambda_{\infty}}}} \dim((\pi^{\infty})^{K^{\infty}})$$

Key Input: [DGG23, DGG24] finds explicit function $d_{\square}(\lambda_{\infty})$ s.t.

$$\sum_{\substack{\pi\in\square \ \pi_{\infty}=\pi_{\lambda_{\infty}}}} \dim((\pi^{\infty})^{K^{\infty}}) \ll d_{\square}(\lambda_{\infty})$$

Goal: \square : subset of $\mathcal{AR}(U^{E,H})$ w/ some fixed Arthur-SL₂. Bound:

$$\sum_{\pi \in \square} \mathsf{a}(\pi, \delta) = \sum_{\lambda_\infty} \mathsf{a}(\lambda_\infty, \delta) \sum_{\substack{\pi \in \square \\ \pi_\infty = \pi_{\lambda_\infty}}} \dim((\pi^\infty)^{K^\infty})$$

Key Input: [DGG23, DGG24] finds explicit function $d_{\square}(\lambda_{\infty})$ s.t.

$$\sum_{\substack{\pi \in \square \\ \pi_\infty = \pi_{\lambda_\infty}}} \dim((\pi^\infty)^{K^\infty}) \ll d_\square(\lambda_\infty)$$

• $d_{\square}(\lambda_{\infty})$ is conjecturally optimal

Goal: \square : subset of $\mathcal{AR}(U^{E,H})$ w/ some fixed Arthur-SL₂. Bound:

$$\sum_{\pi \in \square} \mathsf{a}(\pi, \delta) = \sum_{\lambda_\infty} \mathsf{a}(\lambda_\infty, \delta) \sum_{\substack{\pi \in \square \\ \pi_\infty = \pi_{\lambda_\infty}}} \dim((\pi^\infty)^{K^\infty})$$

Key Input: [DGG23, DGG24] finds explicit function $d_{\square}(\lambda_{\infty})$ s.t.

$$\sum_{\substack{\pi \in \square \\ \pi_\infty = \pi_{\lambda_\infty}}} \dim((\pi^\infty)^{K^\infty}) \ll \mathit{d}_\square(\lambda_\infty)$$

- $d_{\square}(\lambda_{\infty})$ is conjecturally optimal
- Req: End. class. [KMSW14] + inductive method of [Taï17] + seed bound from [ST16] using simple trace formula of [Art89].

Goal: \square : subset of $\mathcal{AR}(U^{E,H})$ w/ some fixed Arthur-SL₂. Bound:

$$\sum_{\pi \in \square} \mathsf{a}(\pi, \delta) = \sum_{\lambda_\infty} \mathsf{a}(\lambda_\infty, \delta) \sum_{\substack{\pi \in \square \\ \pi_\infty = \pi_{\lambda_\infty}}} \dim((\pi^\infty)^{K^\infty})$$

Key Input: [DGG23, DGG24] finds explicit function $d_{\square}(\lambda_{\infty})$ s.t.

$$\sum_{\substack{\pi \in \square \\ \pi_\infty = \pi_{\lambda_\infty}}} \dim((\pi^\infty)^{K^\infty}) \ll d_\square(\lambda_\infty)$$

- $d_{\square}(\lambda_{\infty})$ is conjecturally optimal
- Req: End. class. [KMSW14] + inductive method of [Taï17] + seed bound from [ST16] using simple trace formula of [Art89].

Final Step: plug in formulas for $d_{\square}(\lambda_{\infty}), a(\lambda_{\infty}, \delta)$ and sum!

Given reductive matrix group G/\mathbb{Q}_p , there is an associated contractible simplicial complex \mathcal{B} with a simplicial $G(\mathbb{Q}_p)$ -action.

Given reductive matrix group G/\mathbb{Q}_p , there is an associated contractible simplicial complex \mathcal{B} with a simplicial $G(\mathbb{Q}_p)$ -action.

• Ex: if $G = GL_2/\mathbb{Q}_p$, then \mathcal{B} is an infinite (p+1)-regular tree.

Given reductive matrix group G/\mathbb{Q}_p , there is an associated contractible simplicial complex \mathcal{B} with a simplicial $G(\mathbb{Q}_p)$ -action.

- Ex: if $G = GL_2/\mathbb{Q}_p$, then \mathcal{B} is an infinite (p+1)-regular tree.
- Higher-dimensional generalization for higher-rank groups

Given reductive matrix group G/\mathbb{Q}_p , there is an associated contractible simplicial complex \mathcal{B} with a simplicial $G(\mathbb{Q}_p)$ -action.

- Ex: if $G = GL_2/\mathbb{Q}_p$, then \mathcal{B} is an infinite (p+1)-regular tree.
- Higher-dimensional generalization for higher-rank groups
 Properties:

Given reductive matrix group G/\mathbb{Q}_p , there is an associated contractible simplicial complex \mathcal{B} with a simplicial $G(\mathbb{Q}_p)$ -action.

- Ex: if $G = GL_2/\mathbb{Q}_p$, then \mathcal{B} is an infinite (p+1)-regular tree.
- Higher-dimensional generalization for higher-rank groups

Properties:

- B: union of equidimensional Euclidean subsets, apartments
 - Any two simplices share a common apartment
 - $\mathrm{GL}_2/\mathbb{Q}_p$: apartments are infinite two-sided paths, each $\cong \mathbb{R}$.

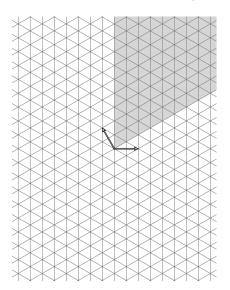
Given reductive matrix group G/\mathbb{Q}_p , there is an associated contractible simplicial complex \mathcal{B} with a simplicial $G(\mathbb{Q}_p)$ -action.

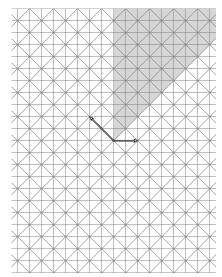
- Ex: if $G = GL_2/\mathbb{Q}_p$, then \mathcal{B} is an infinite (p+1)-regular tree.
- Higher-dimensional generalization for higher-rank groups

Properties:

- B: union of equidimensional Euclidean subsets, apartments
 - Any two simplices share a common apartment
 - $\mathrm{GL}_2/\mathbb{Q}_p$: apartments are infinite two-sided paths, each $\cong \mathbb{R}$.
- If K is a maximal compact special subgroup, $G(\mathbb{Q}_p)/K$ embeds as a subset of the vertices of \mathcal{B} .
 - Consistent with $G(\mathbb{Q}_p)$ -action
 - K is the stabilizer of fixed vertex v_0 .
 - $\operatorname{GL}_2/\mathbb{Q}_p$: $G(\mathbb{Q}_p)/K$ is the vertices of the tree

Example Apartments





Appendix: Bounding decay from Arthur- SL_2

Idea: Closure-Order Conjecture controls Langlands data for π_p in terms of Arthur-SL₂.

Appendix: Bounding decay from Arthur- SL_2

Idea: Closure-Order Conjecture controls Langlands data for π_p in terms of Arthur- SL_2 .

- Langlands data: π_p corresponds to tempered irrep σ and a character χ on Levi
 - χ controls matrix coefficient decay of π_p

Idea: Closure-Order Conjecture controls Langlands data for π_p in terms of Arthur-SL₂.

- Langlands data: π_p corresponds to tempered irrep σ and a character χ on Levi
 - χ controls matrix coefficient decay of π_p
- Closure-Order Conjecture: Expected tight bound on χ

Idea: Closure-Order Conjecture controls Langlands data for π_p in terms of Arthur- SL_2 .

- Langlands data: π_p corresponds to tempered irrep σ and a character χ on Levi
 - χ controls matrix coefficient decay of π_p
- Closure-Order Conjecture: Expected tight bound on χ
- True for "p-adic ABV-packets" of [CFM+22]

Idea: Closure-Order Conjecture controls Langlands data for π_p in terms of Arthur- SL_2 .

- Langlands data: π_p corresponds to tempered irrep σ and a character χ on Levi
 - χ controls matrix coefficient decay of π_p
- Closure-Order Conjecture: Expected tight bound on χ
- True for "p-adic ABV-packets" of [CFM+22]
 - Expected but not known: same as packets from end. classif.

Appendix: Bounding decay from Arthur- SL_2

Idea: Closure-Order Conjecture controls Langlands data for π_p in terms of Arthur- SL_2 .

- Langlands data: π_p corresponds to tempered irrep σ and a character χ on Levi
 - χ controls matrix coefficient decay of π_p
- Closure-Order Conjecture: Expected tight bound on χ
- True for "p-adic ABV-packets" of [CFM+22]
 - Expected but not known: same as packets from end. classif.

Use Instead: [Mœg09], partial information towards conjecture

Idea: Closure-Order Conjecture controls Langlands data for π_p in terms of Arthur- SL_2 .

- Langlands data: π_p corresponds to tempered irrep σ and a character χ on Levi
 - χ controls matrix coefficient decay of $\pi_{\it p}$
- ullet Closure-Order Conjecture: Expected tight bound on χ
- True for "p-adic ABV-packets" of [CFM+22]
 - Expected but not known: same as packets from end. classif.

Use Instead: [Mœg09], partial information towards conjecture

 Good enough for rank-4, 8 after combinatorial casework on computer

Papers Mentioned I

James Arthur, The L²-Lefschetz numbers of Hecke operators, Invent. Math. 97 (1989), no. 2, 257–290. MR 1001841

Ana Caraiani, Local-global compatibility and the action of monodromy on nearby cycles, Duke Mathematical Journal 161 (2012), no. 12, 2311–2413.

Clifton Cunningham, Andrew Fiori, Ahmed Moussaoui, James Mracek, and Bin Xu, Arthur packets for p-adic groups by way of microlocal vanishing cycles of perverse sheaves, with examples.

L. Clozel, Purity reigns supreme, International Mathematics Research Notices 2013 (2013), no. 2, 328-346.

Rahul Dalal, Shai Evra, and Ori Parzanchevski, Golden gates in PU(N), "https://www.mat.univie.ac.at/~rdalal/GoldenGatesDraft.pdf", 2024.

Rahul Dalal and Mathilde Gerbelli-Gauthier, Statistics of cohomological automorphic representations on unitary groups via the endoscopic classification, 2023.

, Root number equidistribution for self-dual automorphic representations on gln, 2024.

Shai Evra and Ori Parzanchevski, Ramanujan complexes and golden gates in PU(3), Geom. Funct. Anal. 32 (2022), no. 2, 193–235. MR 4408431

Amitay Kamber, L_p-expander complexes, arXiv:1701.00154 (2016).

Tasho Kaletha, Alberto Minguez, Sug Woo Shin, and Paul-James White, Endoscopic classification of representations: inner forms of unitary groups, arXiv preprint arXiv:1409.3731 (2014).

Colette Mœglin, Comparaison des paramètres de Langlands et des exposants à l'intérieur d'un paquet d'Arthur, J. Lie Theory 19 (2009), no. 4, 797–840.

Papers Mentioned II

A. Mohammadi and A. Salehi Golsefidy, Discrete subgroups acting transitively on vertices of a Bruhat–Tits building, Duke Mathematical Journal 161 (2012), no. 3, 483–544.

Ori Parzanchevski and Peter Sarnak, Super-golden-gates for PU(2), Adv. Math. 327 (2018), 869–901. MR 3762004

Neil J Ross and Peter Selinger, Optimal ancilla-free Clifford+V approximation of z-rotations, Quantum Information & Computation 15 (2015), no. 11-12, 932–950.

P. Sarnak, Letter to Aaronson and Pollington on the Solvay-Kitaev Theorem and Golden Gates, 2015, https://publications.ias.edu/sarnak/paper/2637.

Sug Woo Shin, Galois representations arising from some compact Shimura varieties, Ann. of Math. (2) 173 (2011), no. 3, 1645–1741. MR 2800722

Sug Woo Shin and Nicolas Templier, *Sato-Tate theorem for families and low-lying zeros of automorphic L-functions*, Invent. Math. **203** (2016), no. 1, 1–177, Appendix A by Robert Kottwitz, and Appendix B by Raf Cluckers, Julia Gordon and Immanuel Halupczok. MR 3437869

Olivier Taïbi, Dimensions of spaces of level one automorphic forms for split classical groups using the trace formula, Ann. Sci. Éc. Norm. Supér. (4) 50 (2017), no. 2, 269–344. MR 3621432

Contact info: rahul.dalal@univie.ac.at